Ремонт Дизайн Мебель

Низкотемпературная система отопления преимущества и недостатки. Низкотемпературные радиаторы REGULUS-system. Отопительные приборы для низкотемпературных систем

Радиаторы, как правило, воспринимаются как элементы систем с высокой температурой. Но уже давно такая точка зрения стала устаревшей, сегодняшние отопительные приборы с легкостью могут устанавливаться в низкотемпературных системах благодаря уникальным техническим характеристикам. Это позволяет сэкономить такие драгоценные энергоресурсы.

Последние десятилетия ведущие европейские изготовители отопительной техники бились над тем, как снизить температуру теплоносителя. Важным фактором для этого стала улучшенная теплоизоляция зданий, а также совершенствование радиаторов. В результате уже в восьмидесятых годах температурные параметры были уменьшены до 75 градусов на подачу и до 65 на «обратку».

В то время, когда стали популярными различные панельные системы отопления, в том числе напольные, температура подачи снизилась до 55 градусов. Сегодня же, на данном этапе технологического развития, система может полноценно функционировать даже при температуре тридцать пять градусов.

Для чего нужно достигать указанные параметры? Это даст возможность использовать новые более экономичные источники тепла. Это позволит существенно сэкономить на энергоресурсах и сократит выброс вредных веществ в атмосферу.

Еще некоторое время назад основными вариантами обогрева помещения носителями с низкой температурой считались теплые полы или конвeкторы с медно-алюминиeвыми теплообмeнниками. Также в этот ряд были включены панельные радиаторы из стали, которые уже довольно давно используют в Швеции в составе низкотeмпературных систем обогрева помещений. Сделано это было после проведения ряда экспериментов и сбора определенной доказательной базы.

Как показали исследования, результаты которых были обнародованы в 2011 году на семинаре в центре Purmо-Radsоn в Австрии, многое зависит от термического комфорта, быстроты и точности реагирования отопительной системы на изменение погодных и других условий.

Обычно человек испытывает температурный дискомфорт тогда, когда в помещении происходит температурная ассиметрия. Она напрямую зависит от того, какая теплоoтдающая поверхность в помещении и где она находится, а также от того, куда сориентирован тепловой поток. Не последнюю роль отыгрывает и температура поверхности пола. Если она выходит за рамки диапазона 19-27 градусов Цельсия, человек может ощущать определенный дискомфорт – будет холодно, или наоборот, слишком жарко. Еще один важный параметр – перепад температур по вертикали, то есть разница температур от ног до головы человека. Эта разница не должна быть больше четырех градусов Цельсия.

Наиболее комфортно человек может чувствовать себя в так называемых движущихся температурных условиях. Если внутреннее пространство включает в себя зоны с разной температурой – это подходящий микроклимат для хорошего самочувствия. Но не нужно делать так, чтобы перепады температур в зонах были значительными – иначе эффект будет прямо противоположным.

По мнению участников семинара, идеальный тепловой комфорт могут создать радиаторы, которые передают тепло как с помощью конвекции, так и способом излучения.

Улучшение изоляции зданий играет злую шутку – в итоге помещения становятся термически чувствительными. Сильно воздействуют на климат в помeщении такие факторы, как солнечный свет, бытовая и офисная техника, скопление людей. Панельные системы отопления не способны так четко реагировать на эти изменения, как это делают радиаторы.

Если устроить теплый пол в бетонной стяжке можно получить систему с большой нагревательной способностью. Но она будет медленно реагировать на регулирование температуры. И даже в том случае, если используются термостаты, система не может быстро отвечать на изменение внешней температуры. Если греющие трубы установлены в бетонную стяжку, напольное отопление даст заметную реакцию на изменение температуры только в течeние двух часов. Термостат быстро реагирует на поступление постороннeго тепла и отключает систему, но вот нагретый пол еще будет отдавать тепло целых два часа. Это очень много. Такая же картина наблюдается в обратном случае, если нужно наоборот нагреть пол – полностью прогретым он будет также спустя два часа.

Действенным в таком случае может быть только саморегулирование. Это сложный динамический процесс, в ходе которого естественным путем регулируeтся подача тепла. В основе этого процесса лежит две закономерности:

Тепло распространяется от болeе нагретой зоны к болeе холодной;

Величина теплового потока напрямую зависит от разницы температур.

Саморегулирование с легкостью может применяться как для батарей, так и для напольного отопления. Но при этом радиаторы куда быстрее реагируют на изменение температурного режима, быстрее остывают и наоборот, нагревают помещение. В результате возобновление заданного температурного режима происходит на порядок быстрее.

Не стоит упускать из виду тот факт, что тeмпература повeрхности радиатора приблизительно такая же, как у теплоносителя. В случае же с напольным покрытием это совершенно не так. Если интенсивное тепло от стороннего носителя будет поступать короткими «рывками», система регуляции тепла в «теплом полу» просто не справится с задачей. Поэтому в результате возникают температурные колебания между полом и помещением в целом. Эту проблему можно попытаться устранить, но как показывает практика, в результате колебания остаются, только становятся немного ниже.

Можно рассмотреть это на примере частного дома, обогреваемого теплым полом и низкотемпературными радиаторами. Допустим, в доме проживает четыре человека, он оснащен естественной вентиляцией. Постороннее тепло может поступать от бытовой техники и непосредственно людей. Комфортная температура для проживания составляет 21 градус Цельсия.

Такую температуру можно поддерживать двумя способами – с помощью перехода на ночной режим или же без него.

При это мне стоит забывать, что оперативная температура является показателем, который характеризирует комбинированное воздeйствие на человека разных температур: радиационной и температуры воздуха, а также скорости движения воздушного потока.

Как показали проведенные опыты, более быстро реагируют на колебания темпeратуры, чем обеспечивают ее меньшие отклонения, именно радиаторы. Теплый пол им значительно проигрывает по всем параметрам.

Но на этом позитивный опыт использования радиаторов не заканчивается. Следующий довод в их пользу – это более эффективный и комфортный температурный прoфиль внутри помещeния.

Еще в 2008 году в международном журнале Enеrgy and Buildings была опубликована работа Джoна Ар Майхрeн и Стюра Холмбeрга «Распредeление темпeратуры и тeпловой комфoрт в комнате с панeльным отопительным прибором, напольным и настенным обогревом». В ней исследователи провели сравнительный анализ эффективности применения радиаторов и теплого пола в обогреве помещений с низкотемпературной системой. Исследователи сравнили распределение температуры по вертикали в идентичных по площади помещениях без мебели и людей.

Как показали результат эксперимента, радиатор, установленный в подоконном пространстве, может гарантировать куда более равномерное распределение теплого воздуха. Кроме этого, он также и предотвращает поступление холодного воздуха в помещение. Но перед тем как принимать решение об установке радиаторов, нужно принимать во внимание качество стеклопакетов, расположение мебели и другие не менее важные нюансы.

Отдельно следует сказать о тепловых потерях. Если для теплого пола процент теплопотери, зависимости от толщины теплоизоляционного слоя, колеблется в рамках от 5 до 15 процентов, то для радиаторов он намного ниже. Высокотемпературный радиатор терпит теплопотери через заднюю стенку в размере 4%, а низкотемпературный и того меньше – всего 1%.

Важно при выборе стального панельного радиатора провести правильные расчеты, так, чтобы при подаче 45 градусов Цельсия в помещении держалась комфортная заданная температура. Нужно учесть и теплоизоляцию здания, и теплопотери, и преобладающую температуру «за бортом».

Предоставленные на семинаре доводы еще раз подтверждают целесообразность применения низкотемпературных регуляторов в системах отопления как отличный вариант экономии на энергоносителях.

А. Никишов

Развитие технической мысли позволило современному человеку иметь большой выбор систем отопления, в зависимости от требований и материальных возможностей, которого не было даже у предыдущего поколения. Постепенное развитие бытовой теплоэнергетики привело к тому, что все большую популярность у населения стали иметь системы низкотемпературного отопления жилья, о которых и пойдет речь в этой статье

Практика показала, что при сравнении двух источников тепла - с высокой и низкой температурами - наиболее комфортные для человека условия создаются именно низкотемпературным прибором отопления, который обеспечивает небольшой перепад температур в помещении и не вызывает негативных ощущений. Верхний предел так называемых низких температур, по определению энергетиков, находится в районе 40˚С. Низкотемпературные системы отопления, использующие теплоноситель, работают с температурами 40-60˚С - на входе в теплопроизводящее устройство и на его выходе. А системы воздушного, электрического и лучистого обогрева используют и более низкие температуры, сравнимые с температурой тела человека. Так что само понятие низких температур довольно условное и, тем не менее, использование теплоносителя или других источников тепла с температурой до 45˚Симеет множество преимуществ, влияющих на выбор такой системы для отопления жилья, и, благодаря своим особенностям, органично вписывается в применение с возобновляемыми источниками энергии.

Ко всем системам отопления предъявляются определенные требования, которые призваны сделать наиболее эффективным, комфортным и безопасным их использование. Строительные, климатические, гигиенические и технологические требования подробно изложены в ДБН В.2.5-67:2013 в пунктах 4, 5, 6, 7, 9, 10 и 11. Эти требования позволяют максимально снизить негативные и одновременно повысить позитивные воздействия на человеческий организм, оказываемые системами отопления.

Необходимо отметить, что одним из важнейших условий эффективности работы любых систем отопления является тщательный учет теплопотерь, а для низкотемпературных систем это едва ли не самое важное. В противном случае такие системы будут малоэффективными и излишне энерго-, а, значит, и материально затратными.

Классификация

Системы низкотемпературного отопления можно условно разделить - по способу приготовления тепла - на монолитные, бивалентные и комбинированные. Монолитные системы характеризуются использованием одной или нескольких теплопроизводящих установок. В бивалентных используются два теплогенератора, имеющих различные принципы работы, один из которых может включаться как дополнительный источник тепла при очень низких температурах наружного воздуха. Несколько теплопроизводящих установок, включенных параллельно, образуют комбинированную систему отопления.

Нагрев теплоносителя во всех системах отопления может осуществляться прямым способом или косвенным. Примером прямого нагрева являются водонагревательные котлы различного типа, работающие на твердом, жидком или газообразном топливе, а также и электрические котлы. Косвенным способом нагревают теплоноситель в теплообменниках (бойлерах) или теплоаккумуляторах. Данный способ очень широко используется в системах, работающих на возобновляемых источниках энергии - ветряных и солнечных.

Также системы низкотемпературного отопления можно разделять по типу теплоносителя - жидкие, газовые, воздушные и электрические, и по виду отопительных приборов - поверхностные, конвекционные и панельно-лучевые.

Описание систем

Все большую популярность низкотемпературные системы отопления приобретают за счет того, что они очень гармонично сочетаются с оборудованием, работающим на возобновляемых источниках энергии. Во времена, когда традиционная энергия становится все дороже это немаловажный фактор.

Водяное отопление

Все системы этого типа характеризуются тремя основными параметрами - температура теплоносителя на выходе из теплопроизводящего устройства (в этом случае используются водонагревательные котлы на твердом, жидком, газообразном топливе и электрические), температура на его входе и температура воздуха в отапливаемом помещении. Такая последовательность цифр указывается во всех документах на котлы.
Современные системы низкотемпературного отопления, в основном, базируются на европейском стандарте EN422, в котором введено понятие «мягкого тепла», предполагающего использование теплоносителя с температурой на выходе из теплопроизводящего устройства 55˚С, а на входе - 45˚С.

Данный тип отопления предполагает применение в системе циркуляционных насосов, которые размещаются так же, как и в обычных системах отопления. Наиболее экономичными считаются «открытые» системы с размещением расширительного бака в верхней точке. Установка насосов в магистраль подачи теплоносителя позволяет избежать возможных зон разрежения, что имеет место при установке циркуляционных насосов на обратной магистрали.

В закрытых системах, работающих с повышенным давлением, наряду с циркуляционным насосом необходимо использовать автоматический воздухоотводчик и сбросной клапан, а также манометр, показывающий давление в системе. Расширительный бак в этом случае размещается в удобном для пользователя месте.

Одним из требований, определяющим эффективность работы открытого типа отопительных систем, является необходимость хорошей теплоизоляции расширительного бака. Иногда - в случае размещения его на чердаках зданий - требуется и его принудительный подогрев.

Одним из наиболее распространенных видов низкотемпературной системы отопления является всем известный «теплый пол» (рис. 1). Системы поверхностного отопления, например, производства компании Oventrop (Германия), включают трубы, монтаж которых может производиться и в пол, и в потолок, и в стены. При этом совершенно не затрагивается интерьер.

Рис. 1. Система отопления с «теплым полом»

В данных системах, благодаря преимущественно лучистому теплообмену, совершенно отсутствует движение воздуха, и тепло равномерно распределяется по помещению. Электронные программируемые регуляторы существенно повышают экономичность системы.

Подающая магистраль систем поверхностного обогрева содержит теплоноситель температурой 40-45˚С, что позволяет с максимальным эффектом использовать возможности конденсационных котлов , а также альтернативные (возобновляемые) источники энергии. В системе, как правило, используется труба из сшитого полиэтилена с защитным от кислорода слоем.

Паровое отопление

Этот тип отопления характеризуется использованием в качестве теплоносителя «насыщенного» пара, что приводит к необходимости обеспечить соответствующий сбор конденсата. И если в системе отопления присутствует один отопительный прибор, что не создает проблем, то при увеличении их количества конденсат отводить становится все труднее и труднее. Решение этой проблемы нашлось в использовании в качестве теплоносителя «холодного» пара. Его роль в современных системах низкотемпературного парового отопления играет, в частности, хладон-114 - негорючее, неядовитое, без запаха и химически устойчивое неорганическое соединение.

Система на «холодном» паре работает за счет использования тепла, выделяемого при конденсации насыщенных паров, которое и нагревает приборы отопления. Конденсатопроводы работают в «мокром» режиме, что обусловлено подпором конденсата. Конденсатоотводчики в этом случае не нужны - конденсат самотеком возвращается в испаритель. Подпиточный насос также не требуется. И паропроводы, и конденсатопроводы монтируются как горизонтально, так и вертикально. Причем совершенно необязательно соблюдать уклон. В случае вертикального монтажа подающий паропровод может размещаться как сверху, так и снизу.

Регулировка системы, работающей на «холодном» паре, осуществляется воздействием на давление пара и его температуру, для чего систему рассчитывают на давление, соответствующее максимально возможной температуре пара.

В качестве отопительных приборов в системе низкотемпературного парового отопления обычно используются секционные радиаторы и конвекторные панели. Для регулировки теплоотдачи каждый прибор отопления снабжают мембранным клапаном.

Воздушные системы

Использование этого типа систем (рис. 2) довольно ограничено. На это оказывают влияние несколько факторов. Во-первых, достаточно низкая степень теплообмена между воздухом и теплопроизводящим устройством или теплообменником. Во-вторых, по гигиеническим соображениям. Воздушные потоки переносят пыль, а воздушные каналы и теплообменные устройства создают хорошие условия для развития нежелательных бактерий и микроорганизмов, и требуют специальной защиты. И, в-третьих, такие системы очень материалоемкие, а, значит, имеют высокую стоимость.

Рис. 2. Воздушная система отопления

Но, несмотря на это, воздушные системы низкотемпературного отопления можно использовать в следующих случаях:

  • если необходимо обеспечить централизованный обогрев при низкой скорости движения воздуха в каналах. Такой способ подходит для обогрева небольших домов и коттеджей с помощью плинтусного воздуховода;
  • если требуется обеспечить центральный подогрев с высокой скоростью воздуха в каналах - система высокого давления. В этом случае требуется специальное воздухораспределительное оборудование, обеспечивающее равномерное поступление воздуха во все помещения и обладающее шумопоглощающими свойствами. Регулировка этой системы осуществляется двумя способами: первичным - на теплообменнике, и вторичным - количеством приточного теплого воздуха;
  • если нужен локальный подогрев нескольких помещений или одного большого. Такие системы знакомы каждому по большим магазинам - используются и воздушные завесы на входе в помещения, и дополнительные воздуховоды с теплым воздухом в необходимых местах.

Электрическое отопление

Эта система представлена на рынке отопительных систем множеством производителей. В ее основе лежит принцип нагрева специального резистивного кабеля (рис. 3) электрическим током. Тепло, снимаемое с кабеля, передается в окружающую среду, создавая мягкий прогрев помещения. Комплектация системы может включать в себя греющие кабели или готовые маты, терморегуляторы и установочный комплект, обеспечивающий быстрый и легкий монтаж.

Рис. 3. Электрический «теплый пол»

Конструктивные элементы систем

Все системы отопления, как уже говорилось выше, предназначены для поддержания оптимального и комфортного соотношения трех параметров - температура теплоносителя после теплопроизводящего устройства, температура отопительного прибора и температура воздухав помещении. Обеспечить такое соотношение можно правильным подбором важных элементов системы.

Теплопроизводящие устройства

Все устройства для производства тепла можно разделить на три группы.

Первая группа - теплогенераторы на основе использования традиционного топлива и электроэнергии. В основной своей массе это различные водогрейные котлы, работающие на твердом, жидком, газообразном топливе и электрической энергии. Даже для косвенного нагрева «холодного» пара в паровых системах низкотемпературного отопления используются все те же водогрейные устройства.

В этой группе приборов можно отметить бытовой конденсационный котел, являющийся устройством, появившемся в результате инновационных разработок по рациональному использованию водяных паров, образующихся при горении топлива. Исследования, которые направлены на более полное использование энергии и одновременно минимизацию негативного воздействия на окружающую среду, позволили создать новый тип отопительного оборудования - конденсационный котел - позволяющий посредством конденсации получать дополнительное тепло из дымовых газов.

К примеру, итальянский производитель Baxi выпускает линейку конденсационных котлов как напольного, так и настенного исполнения. Модельный ряд настенных котлов Luna Platinum (рис. 4) состоит из одноконтурных и двухконтурных конденсационных котлов, с мощностью от 12 до 32 кВт. Ключевым элементом является теплообменник из нержавеющей стали AISI 316L. Различными составными частями котла управляет электронная плата, есть съемная панель управления с жидкокристаллическим дисплеем и встроенной функцией управления температурой. Система модулирования мощности горелки позволяет адаптировать выходную мощность котла к энергии, потребляемой зданием в диапазоне 1:10.

Рис. 4. Конденсационный котел BAXI Luna Platinum

Вторая группа - установки, использующие тепло внесистемных теплоносителей. В таких случаях применяют теплоаккумуляторы.

К третьей группе относятся устройства, использующие внешний теплоноситель для косвенного нагрева. В них с успехом применяются поверхностные, каскадные или барботажные шаровые теплообменники. Именно такой тип используется для подогрева «холодного» пара в системах парового низкотемпературного отопления.

Отопительные приборы

Отопительные приборы делятся на 4 группы:

  • приборы с равными по площади поверхностями, как со стороны теплоносителя, так и со стороны воздуха. Такой тип приборов известен всем - это традиционные секционные радиаторы;
  • устройства конвекционного типа, в которых площадь поверхности, соприкасающейся с воздухом, намного больше поверхности со стороны теплоносителя. В этих приборах излучение тепла носит второстепенный характер;
  • пластинчатые воздухонагреватели с побудительным воздушным потоком;
  • устройства панельного типа - напольные, потолочные или стеновые. В этой линейке отопительных панелей, к примеру, можно отметить чешские панельные стальные радиаторы Korado под названием Radik, выпускаемые в двух исполнениях - с боковым подключением (Klasik), и с нижним со встроенным термостатическим вентилем (VK). Панельные стальные радиаторы предлагает также компания Kermi (Германия).

Рис. 5. Панельный стальной радиатор Korado

К отопительным приборам низкотемпературных систем можно отнести различного рода секционные и панельные нагреватели, отопительные конвекторы, калориферы и отопительные панели.

Теплоаккумуляторы

Эти устройства необходимы в бивалентных системах низкотемпературного отопления, в которых используется энергия из возобновляемых источников или сбросная теплота. Теплоаккумуляторы могут быть жидко- или твердозаполненными, использующие теплоемкость заполнителя для накопления теплоты.

Широкое распространение все больше получают устройства, в которых тепло выделяется в момент фазовых превращений. В них теплота накапливается в процессе плавления вещества или тогда, когда кристаллическая его структура претерпевает определенные изменения.

Также эффективно работают термохимические теплоаккумуляторы, принцип работы которых основан на накапливании теплоты в результате химических реакций, происходящих с выделением тепла.

Аккумуляторы тепла могут подключаться к системе отопления как по зависимой схеме, так и по независимой, когда в них аккумулируется тепло от внесистемного теплоносителя.

Тепловые аккумуляторы могут быть также грунтовыми, скальными и даже подземные озера могут использоваться в качестве накопителя тепла.

Грунтовые тепловые аккумуляторы получают при размещении регистров, изготовленных из труб, с шагом полтора-два метра. Скальные теплоаккумуляторы обустраивают путем бурения вертикальных или наклонных скважин в скальных породах на глубину от 10 до 50 м, куда и закачивается теплоноситель. Использование подземных озер в качестве теплоаккумуляторов возможно в случае размещения в нижних слоях воды труб с закаченным в них теплоносителем. Отбор тепла осуществляется из труб, размещенных в верхних слоях подземных озер.

Тепловые насосы

При использовании в низкотемпературных системах отопления источника тепла, температура которого ниже температуры воздуха в помещении, а также для снижения материалоемкости отопительных приборов, в систему могут включаться тепловые насосы (рис. 6). Самыми распространенными устройствами этой группы являются компрессионные тепловые насосы, дающие при конденсации температуру от 60 до 80˚С.

Рис. 6. Принцип работы теплового насоса

Эффективную работу теплового насоса в низкотемпературной системе отопления обеспечивает включение в контур испарителя теплового аккумулятора, который способствует стабилизации температуры испарения «холодного» пара. Регулировка этой системы осуществляется путем изменения теплоотдачи самого насоса.

Преимущества и недостатки

Низкотемпературные системы отопления завоевывают своих сторонников тем, что создают более комфортные условия в помещении, нежели традиционные - с высоким нагревом отопительных приборов. Не происходит излишнее «осушение» воздуха, отсутствует - опять-таки излишняя - запыленность помещения вследствие неизбежного перемещения воздуха при очень горячих отопительных приборах.

Использование теплоаккумуляторов в системе дает возможность накапливать тепло и моментально использовать его в случае необходимости.

Низкий разброс температур - выходной из теплопроизводящего устройства и воздуха в помещении - позволяет легко регулировать систему, используя программируемые термостаты.

А что касается недостатков, то он, по существу, один - стоимость законченной системы несколько, а то и в разы выше, нежели традиционной высокотемпературной.

Читайте статьи и новости в Telegram-канале AW-Therm . Подписывайтесь на YouTube-канал .

Просмотрено: 14 618

В современном строительстве все чаще применяются решения, базирующиеся на экологически чистых источниках возобновляемой энергии. Низкотемпературное отопление часто становится приоритетом. В связи с этим все шире стали применяться конденсационные котлы или тепловые насосы в соединении с хорошим утеплением объектов. Это не только снижение затрат на эксплуатацию и большая экономия тепловой энергии - достаточно, чтобы температура воды в инсталляции вместо 70ºC достигала 50ºC - но также это гарантия теплового комфорта. Однако, одного теплового насоса не достаточно, в современной, низкотемпературной инсталляции следует применить низкотемпературные радиаторы, которые отличаются наибольшей поверхностью теплообмена, эмиссией тепла с помощью конвекции и/или циркуляции, поддерживаемой вентилятором. Немаловажное значение имеет минимально возможный вес системы передачи тепла - преимущества которой можно оценить в переходные периоды.

Все радиаторные системы REGULUS-system отличаются очень большой поверхностью теплообмена. Прекрасно вписываются в вышеупомянутые условия, вполне соответствуя требованиям экономии энергии в строительстве и обеспечивая тепловой комфорт. Имеют поверхность контакта с нагреваемым воздухом на 50% большую, чем панельные радиаторы того же размера. Большая поверхность контакта означает более эффективное нагревание при низких параметрах теплового агента. Это также потому, что «регулусы» - это низкотемпературные радиаторы. Благодаря своему специфическому строению они не находят места в актуально принятой терминологии радиаторов. Не «ребряки», не «панели» и не «конвекторы» по определению. Состоят из двух систем: медной водяной системы и алюминиевой системы теплообмена. Их строение напоминает автомобильный радиатор. В медном змеевике течет инсталляционная вода, а тепло передается в окружающую среду через алюминиевые эмиттеры тепла. Нагревание помещение происходит смешанным способом с помощью широкоугольного теплового излучения, исходящего от рифленой поверхности и путем конвекции. Большая доля излучения от рифленой поверхности радиатора приводит к равномерному распределению тепла в помещении.

В системах, питающихся фактором с низкими параметрами в переходные периоды, когда необходимостью является быстрое повышение или понижение температуры, хорошо сработает отопительная система с малой общей массой, чем и отличаются радиаторы REGULUS-system. Большая общая масса системы теплообмена отличается высокой тепловой инертностью, что и приводит к систематическому перегреванию или недостаточному нагреванию помещения. Быстрая задержка нагревания важна не только для оптимизации затрат на отопление, но также имеет ключевое значение для теплового комфорта. При внезапном усилении яркости солнечного света в переходные периоды или при возникновении неожиданного притока тепла, соответственно управляемая инсталляция с «регулусами» быстро перестает греть и так же быстро начинает работать, делая отопление экономичным и комфортным.

Отопительная система с малой общей массой делает возможным не только быстрый доступ пользователя к теплу, но и получение тепла в необходимом количестве. Такое отопление просто запустить и остановить, так как инертность системы - минимальная. Система с малой массой может работать практически круглый год, так как затраты на запуск отопления на пятнадцать или пятьдесят минут, с целью коррекции температуры, очень низкие.

В предложении REGULUS-system также доступны версии низкотемпературных радиаторов, значительно улучшающих их эффективность в системах с экологически чистыми источниками тепла, такими как конденсационные котлы, тепловые насосы, системы с несколькими источниками тепла и буфером ц.о. Одной из таких версий является настенный радиатор, усиленный вентилятором. Вентилятор охлаждает тепловой фактор в радиаторе, тем самым увеличивает количество тепла, отдаваемого радиатором помещению - то есть, можно увеличить мощность без изменения размеров радиатора.

E-VENT строение напоминает другие настенные радиаторы REGULUS-system - с той разницей, что в нижней части пакета алюминиевой ламели есть вырез, а в нем магниты, позволяющие прикрепить и снять вентилятор (или вентиляторы, в случае большой длины радиатора). Благодаря вентилятору, устройство нагревает с переменной мощностью, соответствующей требованиям пользователя, повышается его мощность, также существует возможность управления динамикой нагревания.

Может работать в инсталляции также после выключения или деинсталляции, в таком случае работает в режиме стандартного водяного радиатора. Благодаря простоте монтажа и демонтажа вентилятора, радиатор E-VENT прекрасно проявит свои качества в инсталляции, снабженной стандартным котлом ц.о., работающим в высоких параметрах, который в будущем будет заменен на экологически чистый, низкотемпературный источник тепла (конденсационный котел, насос ц.о.). На первом этапе радиатор будет работать без вентилятора, а после смены источника тепла на низкотемпературный уже с вентилятором.


В низкотемпературных инсталляциях прекрасно сдает экзамен другой низкотемпературный радиатор REGULUS-system под названием , являющийся альтернативой стальным, трехпанельным радиаторам. Dubel состоит из двух корпусов радиаторов типа SOLLARIUS (с плоской верхней крышкой), параллельно соединенных в общем корпусе - толщина 18 см. В предложении необычно редкое предложение на рынке: радиатор высотой всего лишь 12 см (+ монтажный стойки - 8 см высоты) для установки в полу в вертикальной позиции. Это низкотемпературный радиатор, который, несмотря на бытующее мнение, при своей относительно большой мощности имеет небольшие размеры. Эта конфигурация работает не только в инсталляциях с тепловыми насосами, но и позволяет ограничить габариты применяемых настенных радиаторов и может применяться в помещениях, потребляющих большое количество тепла.


Все радиаторы REGULUS-system можно применять без ограничений, в открытых и закрытых системах ц.о., а также в инсталляции любого типа, выполненной из меди, пластика или, традиционно, из стали. Радиаторы прекрасно работают совместно с низкотемпературными источниками тепла, конденсационными и твердотопливными котлами, а также с тепловыми насосами. Строение радиаторов предусматривает защиту от коррозии и и изменений давления в инсталляции, значительно продлевая время их эксплуатации. Устройства имеют допуск к применению на территории ЕС.

РЕИМУЩЕСТВА НИЗКОТЕМПЕРАТУРНЫХ РАДИАТОРОВ REGULUS-system

  • экономичное экономичное отопление
  • обеспечение теплового комфорта
  • точная поставка тепла
  • динамичное отапление - быстрая реакция на потребности в тепле
  • равномерное распределение температуры
  • температура безопасного прикосновения
  • большая мощность без значительного увеличения габаритов
  • могут работать совместно с любым источником тепла.
  • гарантия 25 лет

Низкотемпературные системы отопления сегодня по-прежнему еще не получили в России широкого распространения, зато успешно практикуются в Европе, в том числе, в странах с не самым мягким климатом, но там где активно используются для теплоснабжения и климатизации зданий ресурсы возобновляемых источников энергии (ВИЭ).

Г лавными и очевидными достоинствами таких систем является экономия энергоносителей на основе ископаемых углеводород в сочетании с минимизированием вреда экологии. Кроме того, низкотемпературные системы предоставляют пользователю дополнительные возможности в достижении теплового комфорта в доме и управлении микроклиматом помещений.

В России сфера применения низкотемпературных систем отопления ограничена не только климатическими особенностями во многих ее регионах, но и нормативами. В частности, этот фактор действует при массовой застройке, на объектах типа многоквартирных домов, для которых нормативы разработаны под другие режимы теплоснабжения зданий. Поэтому низкотемпературные системы отопления, если и применяются, то в таких учреждениях социального назначения, как поликлиники и детские сады, а также более широко в частном коттеджном секторе. Кроме того, их обычно проектируют и устанавливают для теплоснабжения и климатизации энергосберегающих домов, прежде всего «активных», которые в последние годы тоже стали строится в России. Минимизация теплопотерь через ограничивающие конструкции и вентиляцию здания - вообще одно из главных условий успешного применения там низкотемпературных систем отопления.

Создаются низкотемпературные системы отопления на основе высокоэффективных теплогенераторов и трансформаторов энергии ВИЭ, а также с применением современных моделей отопительных приборов и электронной автоматики, объединяющейся в системы интеллектуального управления.

Генерация с аккумуляцией

По существующим нормативным документам температурный режим системы отопления характеризуется тремя параметрами: температурой теплоносителя на выходе из теплогенератора, на входе в него и температурой воздуха в помещении. Режим, где на выходе из теплогенератора температура теплоносителя не превышает 55 °С, а на входе составляет до 45 °С, считается присущим низкотемпературным системам. Температура воздуха в помещении принимается обычно равной 20 °С. Наиболее распространенные температурные режимы в таких системах - 55/45/20 °С, 45/40/20 °С или даже 35/30/20 °С.

Низкотемпературные системы отопления могут быть моновалентными, где тепло вырабатывается одним теплогенератором, или, чаще, поливалентными, в которых совмещается работа нескольких теплогенераторов или трансформаторов в тепло энергии ВИЭ (рис. 1 ). Такие поливалентные системы еще принято называть гибридными.

Рис.1

Как для моно-, так и для поливалентных систем (в качестве пикового теплогенератора) удачно подходит конденсационный котел. Его режим работы наиболее близок к указанному выше и в значительной степени зависит от температурных параметров системы отопления. Чем ниже температура теплоносителя в обратном котловом контуре, тем более полно происходит конденсация пара, больше тепла будет утилизировано, выше КПД конденсационного котла. Для газовых котлов пороговая температура конденсационного режима - 57 °С. Поэтому и система отопления должна быть рассчитана на использование теплоносителя с более низкой температурой в обратном контуре.

При средних для зимнего периода температурах она по проектному расчету с учетом максимальной эффективности конденсационного режима не должна превышать 45 °С. Такие параметры обеспечиваются низкотемпературными системами отопления, в которых конденсационные котлы работают преимущественно в «штатном» для них режиме.

Разумеется, в низкотемпературных системах может использоваться и находит применение не только конденсационная котельная техника. Теплогенератором в такой системе, в том числе пиковым, может быть любой высокоэффективный котел, работающий на любом топливе и, в частности, электрический. В гибридных системах котел включается в работу только при пиковых нагрузках, когда остальные теплогенераторы (трансформаторы энергии ВИЭ - солнечные коллекторы, тепловые насосы) не справляются с обеспечением теплового комфорта в отапливаемых помещениях и нужд ГВС.

При использовании энергии ВИЭ в системы низкотемпературного водяного отопления обычно включают теплоаккумуляторы, которые могут быть с жидкими и твердыми заполнителями, фазовыми (использующими теплоту фазовых превращений) и термохимическими (теплота аккумулируется за счет эндотермических реакций и высвобождается при экзотермических).

В теплоаккумуляторах с жидкими и твердыми заполнителями (вода, низкозамерзающие жидкости (раствор этиленгликоля), гравий и др.) теплота накапливается за счет теплоемкости материала заполнителя. В фазовых теплоаккумуляторах накопление теплоты происходит при плавлении или изменении кристаллической структуры заполнителя, а высвобождение - при его твердении.

Наибольшее распространение в гибридных низкотемпературных системах водяного отопления, устанавливаемых в коттеджах, получили водяные баки-аккумуляторы, успешно демпфирующие пиковые нагрузки ГВС, запасающие тепло от работы солнечного коллектора, теплового насоса или (зимой) пикового теплогенератора. Аккумулируя тепловую энергию от различных источников, такой теплоаккумулятор позволяет оптимизировать их работу с точки зрения максимальной экономической эффективности в конкретный момент, резервируя «дешевое» тепло. Избыток выработанного тепла при этом может использоваться для ГВС. Их применение оправдано также при использовании тепловых насосов для оптимизации работы компрессоров и гидравлической развязки контуров теплового насоса и нагрузки.

Водяной бак теплоаккумулятор представляет собой хорошо изолированную, например, слоем пенополиуретана толщиной 80-100 мм емкость, в которую встроено несколько теплообменников. Теплоаккумулятор объемом 0,25-2 м 3 может накапливать 14-116 кВт·ч тепловой энергии.

Приборы для систем низкотемпературного отопления

Низкая температура теплоносителя определяет выбор приборов для систем низкотемпературного отопления, которые должны эффективно осуществлять теплоотдачу в отапливаемых помещениях, работая в гибком режиме. Если эти приборы устанавливаются в коттедже, где давление теплоносителя в трубопроводах заведомо невелико, то их прочностные характеристики уходят на второй план.

Рис.2


По мнению специалистов, наиболее удачно в низкотемпературных системах применяются настенные, парапетные или встраиваемые в пол конвекторы с принудительной вентиляцией (рис. 2 ) и стальные панельные радиаторы (рис. 3 ). В таких системах должны применяться конвекторы, оснащенные теплообменником с большой поверхностью - многослойные с частым оребрением и вентилятором, обеспечивающим большой теплосъем. Кроме конвекторов, этим условиям удовлетворяют также настенные настенные и потолочные фанкойлы (вентиляторные доводчики).

Рис.3

В системах принудительной конвекции без вентилятора могут применяться эжекционные доводчики. За счет эффективного теплосъема и большой мощности эти приборы будут обладать небольшими габаритами по сравнению с другими видами оборудования.

Преимуществом таких приборов является возможность их использования в комбинированных системах, которые отапливают помещения в холодный период, а летом используются для охлаждения воздуха.

Если же в низкотемпературных системах применяются конвекторы без вентилятора, их высота должна быть не меньше 400 мм.

Панель с теплоносителем стального панельного радиатора находится снаружи отопительного прибора. От нее греются ламели конвективного элемента. Чем дальше от панели, тем ламели холоднее. Конвекции при низкой температуре радиатора мешает вязкость воздуха, зажатого между ламелями. Но тепловому излучению с панели ничто не мешает.

Стальные панельные радиаторы находят удачное применение в системах низкотемпературного отопления еще и потому, что их модельные линейки включают широкий набор типоразмеров, а это важно для оптимального размещения отопительных приборов в таких системах, в частности, в них должны устанавливаться отопительные приборы, которые перекрывают всю длину оконного проема.

Рис.4

Работа конвекторов с принудительной вентиляцией и стальных панельных радиаторов будет удачно сочетаться с теплым водяным полом (рис. 4 ), который буквально рассчитан на работу с теплоносителем, характеризующимся низкой температурой. Согласно СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование», п. 6.5.12, среднюю температуру поверхности полов со встроенными нагревательными элементами следует принимать не выше 26 °С - для помещений с постоянным пребыванием людей; и не выше 31 °С - для помещений с временным пребыванием людей. Температура поверхности пола по оси нагревательного элемента в детских учреждениях, жилых зданиях и плавательных бассейнах не должна превышать 35 °С. В реальных условиях при существующих технологиях монтажа теплого пола такие температуры его поверхности достигаются при температурах теплоносителя на входе в трубопровод теплого пола не выше 45 °С.

Теплые полы значительно повышают экономичность низкотемпературных систем отопления. Так, при оборудовании теплого пола запаса энергии водяного теплоаккумулятора емкостью 1,2 м 3 достаточно для отопления дома площадью 130-140 м 2 за счет электроэнергии, получаемой по низкому ночному тарифу.

Все приборы водяного отопления в низкотемпературных системах отопления оснащаются терморегулирующей автоматикой.

Интеллектуальное управление

Так как большинство низкотемпературных систем являются гибридными, а также возможно совмещение в одной такой системе функций отопления и кондиционирования, то наибольшей их эффективности и экономичности можно достичь при рациональном управлении всеми составляющими системы. Сегодня для этого применяются системы smart-управления.

Без интеллектуального управления невозможно эффективно и в то же время гибко регулировать систему, основываясь на реальных показаниях датчиков, а не на встроенных графиках, не учитывающих условия конкретно взятого объекта теплоснабжения. Когда в проекте используется smart-управление, необходимо только задать первоначальные настройки, а дальше интеллектуальная автоматика будет автоматически их поддерживать.

Smart-контроллер отвечает за переключение системы с одного источника тепла на другой. Ежесекундно обрабатывая несколько вводных, контроллер выбирает самый экономичный на данный момент источник тепла. Согласно заданной логике сначала используется тепловая энергия от самого дешевого источника.

Применение таких систем интеллектуального управления позволяет дифференцированно задавать температуры в контролируемых помещениях, добиваясь тем самым, кроме экономичности, еще и наивысшего уровня теплового комфорта.

Статья из . Рубрика "Отопление и ГВС"

Особой статистики тут нет, если позволяет высота полов, то выбор однозначно в пользу водяных (жидкостных) теплоносителей. При прочих равных условиях такое отопление ещё долго будет намного дешевле электрического.

Электрические нагреватели тоже используют, они минимальны в обслуживания и дарят широкие возможности в управлении не только климатом, но и отдельными участками встроенного конвертора. Поэтому такие варианты тоже весьма популярны, особенно, учитывая, что они не требуют глубокого канала для монтажа.

Изящное решение, показывающее эффективность встраиваемых конверторов , это примеры обогрева комнат при помощи обратки. Когда остывающий теплоноситель сначала поступает в конвертор и отдаёт остатки тепла нагреваемому воздуху. Такого рода «вторичные» контуры это фактически самые яркие примеры эффективной работы конверторов в низкотемпературных контурах, где температура носителя может составлять и 40 градусов. А температура воздуха и большой объём прогрева обеспечивается физическими размерами конвертора, той самой большой площадью элементов, отдающих тепло.

Так что сейчас наиболее распространенный конвертор – водяной, и в меньшем количестве электрический. На рынке есть комбинированные системы, где электрический нагрев помогает в точной регулировке температур, или в целом направлен на эффективное использование конвертора. В такой системе электронагрев – промежуточное звено повышения температуры теплоносителя, и пока они относятся к экзотическим видам конверторов.

Заметим только, что такая комбинация целесообразна там, где подогревается именно теплоноситель, в других ситуациях разумнее электронагревательным элементом прогревать воздух. И как раз комбинация, в которой электричеством нагревается теплоноситель конвертора, имеет особенное преимущество. Для замкнутого конвертора такого типа (с электроподогревом теплоносителя) не требуется подведение труб, что позволяет модернизировать систему отопления в уже готовых домах с отделкой.

Вне зависимости от используемого типа, встраиваемые конвекторы, кроме обогрева, в целом помогают поддерживать более качественный микроклимат. Не только водяные, но и электрические конвекторы не так «сушат» воздух, так что покупать увлажнитель даже при больших размерах конвертора не придётся.

Есть и другие плюсы, о чём ниже, а с точки зрения выбора того, что будет нагревать ваш конвертор, исходите из эксплуатационных затрат. Электрический обогрев будет стоить дороже, а водяной потребует затрат на обслуживание и уход. Запорная арматура, автоматика (или ручное управление) – всё это соединения, а значит, есть необходимость следить за протечками, и вообще, уделять внимание этой системе.

Некоторые преимущества встраиваемых конверторов в низкотемпературных контурах

Прежде всего, напомним, что конвертор позволяет использовать и горячий, и низкотемпературный теплоноситель, результат всё равно будет хорошим. Но сама конструкция конвертора такова, что исключает ожог при касании горячей поверхности (она закрыта решёткой) и т.н. «лучистую» энергию отопителя. Этот эффект хорошо знаком всем, кто проходил мимо горячего радиатора, когда кажется, что от холодной стены «дует холодом». Дело в том, что часть обогрева радиатор производит при помощи теплового излучения, когда сам нагретый металл греет не воздух, а всё вокруг. Такого неприятного эффекта встраиваемый конвертор не даёт.

Эксплуатация системы отопления с низкой температурой теплоносителя значительно продлевает срок её службы. Довольно очевидный вывод, ведь отсутствуют значительные температурные деформации, теплоноситель не работает в критических режимах и в целом системе более комфортно. Меньше соляных отложений внутри труб, дольше служат все соединения, давление в системе может быть ниже, чем в обычной системе, что снижает риски гидроударов и возникновения аварийных ситуаций.

Защищённость нагревательного элемента конвертора позволяет производителям использовать материалы, которые имеют очень высокую теплоотдачу: медь, алюминий и пр. Ряд современных радиаторов использует аналогичные материалы, но при этом весь радиатор закрывается защитной коробкой, а это снижает эффективность нагрева воздуха. Да и толщина пластин, самых эффективных нагревателей, в радиаторе больше, из соображений общей прочности конструкции.

Эстетика самого прибора отопления тоже имеет значение. Для низкотемпературных контуров применимы декоративные решётки конверторов из камня или иных материалов, что делает этот нагреватель элементом интерьера, а не пятном, которое хочется спрятать.


Установка вентилятора в конверторах с принудительной конвекцией позволяет обеспечить эффективный теплообмен. В низкотемпературном контуре разница температуры теплоносителя на входе и выходе может составить 10-15 градусов, но этой разницы с запасом хватает на прогрев помещения. Вспомните начало статьи, в радиаторах для прогрева комнаты эта разница может составлять 20-25 градусов, без использования дополнительных мер.

Теплоизоляция встраиваемого конвертора снижает потери тепла, и при этом пол вокруг него тоже греется, нагревая воздух. В стандартном размещении радиатор хорошо прогревает только стену, на которой висит, а пол под ним может быть очень холодным.

Конвертор, с точки зрения площади нагрева, близок к тёплому полу, но лишён его недостатка – невысокая температура пола. Если пол прогреть до 25 градусов это полностью решит проблему нагрева воздуха, но ходить по такому полу будет весьма проблематично. И при этом конвертор работает как раз в зоне пола, обеспечивая комфортный нагрев там, где нужно, всегда ведь неприятно ходить по холодному полу даже в тёплой комнате.

И, в конечном счете, в низкотемпературных контурах встраиваемые конвекторы не только успешно и эффективно решают проблемы прогрева помещений, но и делают это мягко. В комнатах, которые обогревает конвертор, нет, так называемых, разнотемпературных зон, когда вблизи радиатора жарко, а около двери прохладно. Равномерность и постоянность прогрева – ещё одно достоинство этого отопительного прибора, на который рекомендуем вам обратить самое пристальное внимание.

Если, конечно, у вас есть возможность спланировать установку именно такого нагревателя.