Ремонт Дизайн Мебель

Следующими свойствами высокая адгезия к. Что такое адгезия. Адгезия основных строительных материалов

Почему краска, наносимая на окрашиваемую поверхность по истечению некоторого времени прочно удерживается на ней? Почему штукатурное покрытие при застывании схватывается с основой? Почему в принципе возможно бетонирование? Ответ на эти вопросы один: всё дело в адгезии - явлении прилипания двух поверхностей, соединённых друг с другом.

Что же такое адгезия

Адгезия определяет возможность склеивания твердых тел с помощью клеящего состава, а также прочность связи декоративного или защитного покрытия с основой. Причиной появления адгезионной связи является влияние молекулярных сил (физическая адгезия ) либо сил химического взаимодействия (химическая адгезия ).

Интенсивность адгезии определяется давлением отрыва, которое следует приложить к покрытию (штукатурке, краске, герметику и т.д.), чтобы оторвать/отделить его от основы.

Таким образом, данный показатель принято измерять в единицах удельного усилия - мегапаскалях (МПа). Например, значение усилия отрыва (или прилипания, что одно и то же) в 1 МПа означает, что для отделения покрытия, имеющего площадь 1 мм 2 , следует приложить усилие в 1 Н (напомним, что 1 кг = 9,8 Н). Адгезионные показатели покрытий являются их основной характеристикой, которая обеспечивает необходимую прочность, надёжность, а также определяет трудоёмкость работы с ними.

Что влияет на адгезионную способность веществ, применяемых в строительстве

В процессе схватывания рабочей смеси в ней происходят различные процессы, которые обуславливают определённые изменения её свойств. В частности, при усадке растворной смеси возможно сокращение поверхности контакта с появлением растягивающих напряжений , которые приведут к образованию усадочных трещин . Как результат - ослабляется сцепление поверхностей. Например, сцепление старой бетонной поверхности с новым бетоном не превышает 0,9…1,0 МПа, в то время, как сцепление сухих строительных смесей (в состав которых входят компоненты, инициирущие процессы химической адгезии) с новым бетоном достигает 2 МПа и более.

Как улучшить адгезию

Обычно реализуют комплекс мер, обеспечивающих улучшение сцепляемости: проводят механическую (шлифование), физико-химическую (шпаклевание, грунтовка) и химическую (эластификация) обработку поверхности основы. Особенно эффективны указанные процессы в ремонтно-строительных работах, когда контактирующие поверхности разнородны не только по своему химсоставу, но и по условиям их образования.

Важно! Свежий щелочной цементный раствор всегда плохо сцепляется с поверхностью старого бетона, поэтому при работах со старым бетоном обязательно следует использовать многослойные адгезионные составы

Как измерить адгезионную способность материалов

ГОСТ 31356-2007 регламентирует определяющие показатели прочности сцепления сухих строительных смесей с основанием. О последовательности проведения тестовых испытаний материалов на их сцепляемость. Технология проведения подобных испытаний позволяет определить прочность сцепления таких покрытий, как керамическая плитка, различные защитные покрытия, штукатурка и т.д. с основанием.

Для контроля качества выполненных работ удобно использовать адгезиметр системы ОНИКС-АП NEW. Диапазон измерения усилий схватывания с применением данного прибора составляет 0…10 кН. При испытании измеряется усилие, которое необходимо для отделения или отрыва покрытия от поверхности основы в направлении, перпендикулярном плоскости покрытия. Удобство применения адгезиметра заключается в том, что с его помощью возможен оперативный контроль качества отделочных и штукатурных работ. Прибор компактен и удобен в обслуживании (см. рис. 1.2,3).


Рис.1. Определение усилия схватывания керамической плитки с помощью адгезиометра (шаг 1)

  • Адгезия (от лат. adhaesio - прилипание) в физике - сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярными взаимодействиями (Ван-дер-Ваальсовыми, полярными, иногда - взаимной диффузией) в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия, то есть сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.

    Адгезия существенно влияет на природу трения соприкасающихся поверхностей: так, при взаимодействии поверхностей с низкой адгезией трение минимально. В качестве примера можно привести политетрафторэтилен (тефлон), который в силу низкого значения адгезии в сочетании с большинством материалов обладает низким коэффициентом трения. Некоторые вещества со слоистой кристаллической решёткой (графит, дисульфид молибдена), характеризующиеся одновременно низкими значениями адгезии и когезии, применяются в качестве твёрдых смазок.

    Наиболее известные адгезионные эффекты - капиллярность, смачиваемость/несмачиваемость, поверхностное натяжение, мениск жидкости в узком капилляре, трение покоя двух абсолютно гладких поверхностей. Критерием адгезии в некоторых случаях может быть время отрыва слоя материала определенного размера от другого материала в ламинарном потоке жидкости.

    Адгезия имеет место в процессах склеивания, пайки, сварки, нанесения покрытий. Адгезия матрицы и наполнителя композитов (композиционных материалов) является также одним из важнейших факторов, влияющих на их прочность.

    В биологии клеточная адгезия - не просто соединение клеток между собой, а такое их соединение, которое приводит к формированию определённых правильных типов гистологических структур, специфичных для данных типов клеток. Специфичность клеточной адгезии определяется наличием на поверхности клеток белков клеточной адгезии - интегринов, кадгеринов и др. Например, адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах повреждённой сосудистой стенки.

    В антикоррозионной защите адгезия лакокрасочного материала к поверхности - наиболее важный параметр, влияющий на долговечность покрытия. Адгезия – прилипание лакокрасочного материала к окрашиваемой поверхности, одна из основных характеристик промышленных ЛКМ. Адгезия лакокрасочных материалов может иметь механическую, химическую или электромагнитную природу и измеряется силой отрыва лакокрасочного покрытия на единицу площади подложки. Хорошая адгезия лакокрасочного материала к окрашиваемой поверхности может быть обеспечена лишь при тщательной очистке поверхности от грязи, жира, ржавчины и прочих загрязнений. Также для обеспечения адгезии необходимо достичь заданной толщины покрытия, для чего используются толщиномеры мокрого слоя. Для оценки адгезии/когезии приняты и утверждены критерии.

АДГЕЗИЯ

АДГЕЗИЯ

(от лат. adhaesio - ), возникновение связи между поверхностными слоями двух разнородных (твёрдых или жидких) тел (фаз), приведённых в соприкосновение. Является результатом межмолекулярного взаимодействия, ионной или металлич. связей. Частный случай А.- - вз-ствие соприкасающихся одинаковых тел. Предельный случай А.- хим. вз-ствие на поверхности раздела (хемосорбция) с образованием слоя хим. соединения. А. измеряется силой или работой отрыва на ед. площади контакта поверхностей (адгезионного шва) и становится предельно большой при полном контакте по всей площади соприкосновения тел (напр., при нанесении жидкости (лака, клея) на тв. тела в условиях полного смачивания; образовании одного тела как новой фазы другого; образовании гальванопокрытий и т. д.).

В процессе А. уменьшается свободная тела. Уменьшение этой энергии, приходящееся на 1 см2 адгезионного шва, наз. свободной энергией А. fA, к-рая равна работе адгезионного отрыва WA (с обратным знаком) в условиях обратимого изотермич. процесса и выражается через натяжения на границах раздела первое тело - внеш. среда (в к-рой находятся тела) s10, второе тело - среда s20, первое тело - второе тело s12:

FA=WA=s12-s10-s20.

При полном смачивании q=0 и W=2s10.

Совокупность методов измерения силы отрыва или скалывания при А. наз. а д г е з и о м е т р и е й. А. может сопровождаться взаимной диффузией в-в, что ведёт к размытию адгезионного шва.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

АДГЕЗИЯ

(от лат. adhaesio - прилипание, сцепление, притяжение) - связь между разнородными конденсированными телами при их контакте. Частный случай А.- аутогезия, проявляющаяся при соприкосновении однородных тел. При А. и аутогезии сохраняется граница раздела фаз между телами, в отличие от когезии, определяющей связь внутри тела в пределах одной фазы. Наиб. значение имеет А. к твёрдой поверхности (субстрату). В зависимости от свойств адгезива (прилипшего тела) различают А. жидкости и твердых тел (частиц, плёнок и структурированных упруговязкопластич. масс, напр. расплавов, битумов). Аутогезия характерна для твёрдых плёнок в многослойных покрытиях и частиц, определяет дисперсных систем и композиц. материалов (порошков, грунта, бетона и др.).

А. зависит от природы контактирующих тел, св-в их поверхностей и площади контакта. А. определяется силами межмолекулярного притяжения и усиливается, если одно или оба тела электрически заряжены, если при контакте тел образуется донорно-акцепторная связь, а также вследствие капиллярной конденсации паров (напр., воды) на поверхностях, в результате возникновения хим. связи между адгезивом и субстратом. В процессе диффузии возможны взаимное проникновение молекул контактирующих тел, размывание границы раздела фаз и переход А. в когезию. Величина А. может измениться при адсорбции на границе раздела фаз, а также за счёт подвижности полимерных цепей Между твёрдыми телами в жидкой среде формируется тонкий слой жидкости и возникает , препятствующее А. Следствием А. жидкости к поверхности твёрдого тела является смачивание.

Возможность А. при изотермич. обратимом процессе определяется убылью свободной поверхностной энергии, к-рая равна равновесной работе адгезии :


где - поверхностные натяжения субстрата 1 и адгезива 2 на границе с окружающей средой 3 (напр., воздухом) до А. и при А. С увеличением поверхностного натяжения субстрата А. растёт (напр., велика для металлов и мала для полимеров). Приведённое ур-ние является исходным для расчёта равновесной работы А. жидкости. А. твёрдых тел измеряется величиной внеш. воздействия при отрыве адгезива, А. и аутогезия частиц - средней силой (рассчитывается как матем. ожидание), а порошка - уд. силой. Силы А. и аутогезии частиц увеличивают трение при движении порошков.

При отрыве плёнок и структурир. масс измеряется адгезионная прочность, к-рая, кроме А., включает усилие на деформацию и течение образца, разрядку двойного электрич. слоя и др. явления. Адгезионная прочность зависит от размеров (толщины, ширины) образца, направления и скорости приложения внеш. усилия. При А., слабой по сравнению с когезией, имеет место адгезионный отрыв, при относительно слабой когезии - когезионный разрыв адгезива. А. полимерных, лакокрасочных и др. плёнок определяется смачиванием, условием формирования площади контакта жидким адгезивом и при его затвердевании образованием внутр. напряжений и ре-лаксац. процессами, влиянием внеш. условий (давления, темп-ры, электрич. поля и др.), а прочность клеевых соединений - ещё и когезией отвердевшей клеевой прослойки.

Изменение А. вследствие возникновения двойного электрич. слоя в зоне контакта и образования донор-но-акцепторной связи для металлов и кристаллов определяется состояниями внеш. электронов атомов поверхностного слоя и дефектами кристаллич. решётки, полупроводников - поверхностными состояниями и наличием примесных атомов, а диэлектриков - дипольным моментом функциональных групп молекул на границе фаз. Площадь контакта (и величина А.) твёрдых тел зависит от их упругости и пластичности. Усилить А. можно путём активации, т. е. изменения морфологии и энергетич. поверхности ме-ханич. очисткой, очисткой с помощью растворов, вакуумированием, воздействием эл.-магн. излучения, ионной бомбардировкой, а также введением разл. функциональных групп. Значит. А. металлич. плёнок достигается электроосаждением, металлич. и неме-таллич. плёнок - термич. испарением и вакуумным напылением, тугоплавких плёнок - с помощью плазменной струи.

Совокупность методов определения А. наз. адгезиометрией, а приборы их реализующие - адгезиометрами. А. может быть измерена при помощи прямых (усилие при нарушении адгезионного контакта), неразрушающих (по изменению параметров ультразвуковых и эл.-магн. волн вследствие поглощения, отражения или преломления) и косвенных (характеризующих А. в сопоставимых условиях лишь относительно, напр. отслаиванием плёнок после надреза, наклоном поверхности для порошков и др.) методов.

Лит.: 3имон А. Д., Адгезия пыли и порошков, 2 изд., М., 1976; его же, Адгезия пленок и покрытий, М., 1977; его же, Что такое адгезия, М., 1983; Дерягин Б. В., Кротова Н. А., Смилга В. П., Адгезия твердых тел, М., 1973; 3имон А. Д., Андрианов Е. И., Аутогезия сыпучих материалов, М., 1978; Басин В. Е., Адгезионная прочность, М., 1981; Коагуляционные контакты в дисперсных системах, М., 1982; Вакула В. Л., Притыкин Л. М., Физическая химия адгезии полимеров, М., 1984. А. Д. Зимон.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Смотреть что такое "АДГЕЗИЯ" в других словарях:

    - (от лат. adhaesio прилипание) в физике сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярным взаимодействием (вандерваальсовым, полярным, иногда образованием химических связей или… … Википедия

    адгезия - прочность сцепления Совокупность сил, связывающих покрытие с окрашиваемой поверхностью. [ГОСТ Р 52804 2007] адгезия Поверхностное явление, приводящее к сцеплению между приведенными в соприкосновение разнородными материалами под действием физико… … Справочник технического переводчика

    Адгезия - – сцепление поверхностей разнородных тел. Достигается при нанесении гальванических и лакокрасочных покрытий, склеивании, сварке и др., а также при образовании поверхностных пленок (например, окисных, сульфидных). При взаимодействии молекул одного … Энциклопедия терминов, определений и пояснений строительных материалов

    - (лат. adhaesio, от adhaerere прилипать, быть соединенным). Слипание, сцепление. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АДГЕЗИЯ лат. adhaesio, от adhaerere, прилипать. Слипание. Объяснение 25000 иностранных … Словарь иностранных слов русского языка

    Слипание, приклеивание, прилипание, склеивание, сцепление Словарь русских синонимов. адгезия сущ., кол во синонимов: 5 приклеивание (12) … Словарь синонимов

    адгезия - и, ж. adhésion f., нем. Adhäsion <лат. adhaesio прилипание. 1372. Лексис. Слипание поверхностей двух разнородных твердых или жидких тел. СИС 1985. Явление склеивания было извесно давно, но задумываться о его природе стали относительно недавно… … Исторический словарь галлицизмов русского языка

    - (от лат. adhaesio прилипание) сцепление поверхностей разнородных тел. Благодаря адгезии возможны нанесение гальванических и лакокрасочных покрытий, склеивание, сварка и др., а также образование поверхностных пленок (напр., оксидных) … Большой Энциклопедический словарь

    АДГЕЗИЯ, притяжение молекул одного вещества к молекулам другого. В резинах, клеях и пастах свойство адгезии для удерживания вместе различных веществ. см. также КОГЕЗИЯ … Научно-технический энциклопедический словарь

Существует множество различных способов взаимодействия между физическими телами. Одним из них является адгезия поверхности. Давайте рассмотрим, что это за явление и какие оно имеет свойства.

Что такое адгезия

Определение термина становится более понятным, если выяснить, как образовалось данное слово. С латыни adhaesio переводится, как "притяжение, сцепление, прилипание". Таким образом, адгезия - это не что иное, как связь конденсированных разнородных тел, которая возникает при их контакте. Когда соприкасаются однородные поверхности, возникает частный случай данного взаимодействия. Он именуется аутогезия. В обоих случаях можно провести четкую линию раздела фаз между данными объектами. В противоположность им выделяют когезию, при которой происходит сцепление молекул внутри самого вещества. Чтобы было понятней, рассмотрим пример из жизни. Возьмем и обычную воду. Затем нанесем их на разные части одной и той же стеклянной поверхности. В нашем примере вода представляет собой вещество, которому присуща плохая адгезия. Это несложно проверить, перевернув стекло вверх ногами. Когезия же характеризует прочность вещества. Если склеить два кусочка стекла клеем, то соединение будет достаточно надежным, но если соединить их пластилином, то последний порвется посередине. Из чего можно сделать вывод, что его когезии для прочной связи будет недостаточно. Можно сказать, что обе эти силы дополняют друг друга.

Виды адгезии и факторы, влияющие на ее силу

В зависимости от того, какие тела между собой взаимодействуют, проявляются те или иные особенности прилипания. Наибольшее значение представляет собой адгезия, возникающая при взаимодействии с твердой поверхностью. Это свойство имеет практическую ценность при изготовлении всевозможных клеев. Кроме того, выделяют еще адгезию твердых тел и жидкости. Можно выделить несколько ключевых факторов, которые напрямую определяют силу, с которой будет проявляться адгезия. Это площадь контакта, природа контактирующих тел и свойства их поверхностей. Кроме того, если хотя бы один из пары объектов несет на себе то при взаимодействии появится донорно-акцепторная связь, которая усилит силу сцепления. Немалую роль играет капиллярная конденсация паров воды на поверхностях. Благодаря этому явлению между субстратом и адгезивом могут возникать химические реакции, что также увеличивает силу связи. А если твердое тело окунуть в жидкость, то можно заметить следствие, которое также вызывает адгезия, - это смачивание. Данное явление часто используется при окраске, склеивании, пайке, смазке, обогащении горных пород и т.д. Для устранения адгезии применяют смазку, которая препятствует непосредственному контакту поверхностей, а для ее усиления, наоборот, производят активацию поверхности посредством механической или химической очистки, воздействием электромагнитного излучения или добавления различных функциональных примесей.

Количественно степень такого взаимодействия определяется усилием, которое нужно приложить для того, чтобы разделить контактирующие поверхности. А для того чтобы измерить силу адгезии, используются специальные приборы, которые называют адгезиометрами. Сама же совокупность методов ее определения носит название адгезиометрии.

Отправим материал вам на e-mail

Это сцепление различных по своему составу и структуре материалов, обусловленное их физическими и химическими свойствами. Термин адгезия произошёл от латинского слова adhesion – прилипание. В строительстве дают более узконаправленное и специфическое обозначение тому, что такое адгезия – это способность декоративно-отделочных покрытий (ЛКМ, штукатурки), герметизирующих или клеящих смесей к прочному и надёжному соединению с внешней поверхностью материала основания.

Впечатляющая демонстрация эффекта адгезии современных клеевых составов

Важно! Следует различать понятия адгезии и когезии. Адгезия соединяет разнотипные материалы, затрагивая только поверхностный слой. К примеру, краска на металлической поверхности. Когезия - это соединение однотипных материалов, в результате которого образуются межмолекулярные взаимодействия.

Адгезия является одним из ключевых свойств материалов в следующих областях:

  1. Металлургия – антикоррозионные покрытия.
  2. Механика – слой смазки на поверхности элементов машин и механизмов.
  3. Медицина – стоматология.
  4. Строительство. В данной отрасли адгезия является одним из главных показателей качества выполнения работ и надёжности конструкций.

Практически на всех этапах строительства контролируются показатели адгезии для следующих соединений:


Пример химической адгезии — реакция соединения силиконового герметика со стеклом

Существует три основных принципа адгезионного соединения материалов. В строительстве и технологии они проявляются следующим образом:

  1. Механический — сцепление происходит путем прилипания наносимого материала к основанию. Механизм такого соединения заключается в проникновении наносимого вещества в поры внешнего слоя или соединении с шероховатой поверхностью. Примером, является окраска поверхности бетона или металла.
  2. Химический — связь между материалами, в том числе различной плотности, происходит на атомном уровне. Для образования такой связи необходимо присутствие катализатора. Примером адгезии такого типа является пайка или сварка.
  3. Физический — на сопрягаемых поверхностях возникает электромагнитная межмолекулярная связь. Может образоваться в результате возникновения статического заряда или под воздействием постоянного магнитного или электромагнитного поля. Пример использования в технологии — окрашивание различных поверхностей в электромагнитном поле.

Адгезионные свойства строительных и отделочных материалов

Адгезия строительных и отделочных материалов осуществляется, преимущественно, по принципу механического и химического соединения. В строительстве используется большое количество различных веществ, эксплуатационные характеристики и специфика взаимодействия которых кардинальным образом отличаются. Разделим их на три основные группы и охарактеризуем более подробно.

Лакокрасочные материалы

Адгезия ЛКМ к поверхности основания осуществляется по механическому принципу. При этом, максимальные показатели прочности достигаются в том случае, если рабочая поверхность материала имеет шероховатости или пористая. В первом случае существенно увеличивается площадь соприкосновения, во втором, краска проникает в поверхностный слой основания. Кроме того, адгезионные свойства ЛКМ увеличиваются благодаря различным модифицирующим добавкам:

  • органосиланы и полиорганосилоксаны оказывают дополнительное гидрофобизирующее и антикоррозионное действие;
  • полиамидные и полиэфирные смолы;
  • металлоорганические катализаторы химических процессов отвердения ЛКМ;
  • балластные мелкодисперсные наполнители (к примеру, тальк).


Краска с тальковым наполнителем — не вспучивающийся антипирен

Строительные штукатурки и сухие клеящие смеси

До недавнего времени, строительные и отделочные работы велись с использованием различных растворов на основе гипса, цемента и извести. Зачастую, их смешивали в определённой пропорции, что давало ограниченное изменение их основных свойств. Современные готовые сухие строительные смеси: стартовые, финишные и мультифинишные штукатурки и шпаклевки, имеют гораздо более сложный состав. Широко применяются добавки различного происхождения:

  • минеральные - магнезиальные катализаторы, жидкое стекло, глиноземистый, кислотоустойчивый или безусадочный цемент, микрокремнезём и т.п.
  • полимерные - диспергируемые полимеры (ПВА, полиакрилаты, винилацетаты и т.п.).

Такие модификаторы существенно изменяют следующие основные характеристики строительных смесей:

  • пластичность;
  • водоудерживающие свойства;
  • тиксотропность.

Важно! Использование полимерных модификаторов даёт более выраженный эффект усиления адгезии. Однако образование устойчивых соединений полимерных плёнок на границе разнотипных материалов (основание - твердеющая штукатурка) возможно только при определённой температуре. Этот термин называется минимальной температурой плёнкообразования – МТП. У разных штукатурок она может быть различной от +5°С до +10°С. Во избежание расслоения, необходимо точно придерживаться рекомендаций производителя относительно температуры, как окружающей среды, так и основания.

Герметики

Герметики, использующиеся в строительстве, различают по трём различным типам, каждый из которых требует определённых условий для высокопрочной адгезии с материалом основания. Рассмотрим каждый тип подробнее.

  • Высыхающие герметики. В состав входят различные полимеры и органические растворители: бутадиен-стирольные или нитрильные, хлоропреновый каучук и т.п. Как правило, имеют пастообразную консистенцию с вязкостью 300-550 Па. В зависимости от вязкости, наносятся либо шпателем, либо кистью. После их нанесения на поверхность, необходимо определённое время для высыхания (испарения растворителя) и образования полимерной плёнки.


  • Невысыхающие герметики. Состоят, как правило, из каучука, битума и различных пластификаторов. Имеют ограниченную устойчивость к высокой температуре, не более 70 0 С-80 0 С, после чего начинают деформироваться.

  • Отверждающиеся герметики. После их нанесения, под воздействием различных факторов: влага, тепло, химические реагенты, происходит необратимая реакция полимеризации.

Из всех перечисленных разновидностей, отверждающиеся герметики обеспечивают максимальную надёжность сцепления с микронеровностями поверхности основания. Кроме того, они устойчивы к высоким температурам, механическим и химическим воздействиям. Они имеют оптимальное сочетание жёсткости и вязкости, позволяющее сохранять первоначальную форму. Однако, являются наиболее дорогостоящими и сложными в использовании.

Как измеряется адгезия?

Технология измерения адгезии, способы испытания, а также все показатели прочности соединения материалов указаны в следующих нормативах:

  • ГОСТ 31356-2013 - шпаклёвки и штукатурки;
  • ГОСТ 31149-2014 - лакокрасочные материалы;
  • ГОСТ 27325 - ЛКМ к дереву и т.п.
Информация! Адгезия измеряется в кгс/см 2 , МПа (мегапаскали) или кН (килоньютоны) - это показатель силы, которую необходимо приложить, для разделения материалов основания и покрытия.

Если раньше адгезионные характеристики материалов можно было измерять только в лабораторных условиях, то на данный момент существует множество приборов, которые можно использовать непосредственно на строительной площадке. Большинство методов измерения адгезии, как «полевых», так и лабораторных связаны с разрушением внешнего, покрывающего, слоя. Но есть несколько устройств, принцип действия которых основан на ультразвуке.

  • Нож адгезиметр. Используется для определения параметров адгезии методом решётчатых и или параллельных надрезов. Применяется для лакокрасочных и плёночных покрытий толщиной до 200 мкм.

  • Пульсар 21. Устройство определяет плотность материалов. Используется для выявления трещин и расслоений в бетоне как штучном, так и монолитном. Существуют специальные прошивки и подпрограммы, которые по плотности прилегания, позволяют определить прочность адгезии штукатурок различных типов к бетонным поверхностям.

  • СМ-1У. Используется для определения адгезии полимерных и битумных изоляционных покрытий методом частичного разрушения – сдвига. Принцип измерения основан на выявлении линейных деформаций изоляционного материала. Как правило, применяется для определения прочности изоляционного покрытия трубопроводов. Допускается использование для проверки качества нанесение битумной гидроизоляции на строительные конструкции: стены подвалов и цокольных этажей, плоские крыши и т.п.

Факторы, снижающие адгезию материалов

На снижение адгезии оказывают влияние различные физические и химические факторы. К физическим относится температура и влажность окружающей среды в момент нанесения декоративно-отделочных или защитных материалов. Также снижают адгезионные взаимодействия различные загрязнения, в частности, пыль покрывающая поверхность основания. В процессе эксплуатации влияние на прочность соединения лакокрасочных материалов может оказывать ультрафиолетовое излучение.

Химические факторы, снижающие адгезию, представлены различными материалами загрязняющими поверхность: бензин и масла, жиры, кислотные и щелочные растворы и т.п.

Также адгезию отделочных материалов могут снижать различные процессы, возникающие в строительных конструкциях:

  • усадка;
  • растягивающие и сжимающие напряжения.
Информация! Вещество, наносимое на поверхность для увеличения силы сцепления между основанием и отделочным материалом, называется адгезивом. Основание, на которое наносится адгезив, называется субстратом.

Методы повышения адгезии

В строительстве существует несколько универсальных способов повышения адгезии декоративных отделочных материалов с поверхностью основания:

  1. Механический – поверхности основания придают шероховатость, чтобы увеличить площадь соприкосновения. Для этого её обрабатывают различными абразивными материалами, наносят насечки и т.п.
  2. Химический – в состав наносимых защитно-отделочных материалов добавляют различные вещества. Это, как правило, полимеры, образующие более прочные связи и придающие материалу дополнительную эластичность.
  3. Физико-химический – поверхность основания обрабатывают грунтовкой, изменяющей основные химические параметры материала и оказывающей влияние на определённые физические свойства. К примеру, снижение влагопоглощения у пористых материалов, закрепление рыхлого внешнего слоя и т.п.

Способы увеличения адгезии к различным материалам

Более подробно остановимся на методах повышения адгезии для различных материалов, применяемых в строительстве.

Бетон

Бетонные стройматериалы и конструкции повсеместно применяются в строительстве. За счёт высокой плотности и гладкости поверхности их потенциальные адгезионные показатели довольно низкие. Для увеличения прочности соединения отделочных составов необходимо учесть следующие параметры:

  • сухая или влажная поверхность. Как правило, адгезия к сухой поверхности выше. Однако были разработаны множество клеевых смесей, требующих предварительного смачивания поверхности основания. В данном случае необходимо обращать внимание на требования производителя;
  • температура окружающей среды и основания. Большинство отделочных материалов наносится на бетонные поверхности при температуре воздуха не менее +5°С...+7°С. При этом бетон не должен быть замёрзшим;
  • грунтовка. Используется в обязательном порядке. Для плотных бетонов, это составы с наполнителем из кварцевого песка (бетонконтакт), для пористых бетонов (пено-, газобетон), это грунтовки глубокого проникновения на основе акриловых дисперсий;
  • добавление модификаторов. Готовые сухие штукатурные смеси уже имеют в своем составе различные адгезионные добавки. Если штукатурка замешивается самостоятельно, то в неё рекомендуется добавить: ПВА, акриловую грунтовку, вместо такого же количества воды, силикатный клей, придающий отделочному материалу дополнительные влагоотталкивающие свойства.

Металл

Ключевую роль в прочности соединения лакокрасочных материалов с металлической поверхностью играет способ и качество подготовки поверхности. В домашних условиях рекомендуется выполнить следующие действия:

  • обезжиривание – обработка металла различными растворителями: 650, 646, Р-4, уайт-спирит, ацетон, керосин. В крайнем случае, поверхность протирается бензином;
  • матирование – обработка основания абразивными материалами;
  • грунтование – использование специальных красок праймеров. Они реализуются в комплекте с декоративными ЛКМ определённого типа.
Важно! Адгезия свинца, алюминия и цинка намного ниже, чем у чугуна и стали. Причина заключается в том, что эти металлы образуют на своей поверхности оксидные плёнки. Поэтому отслаивание лакокрасочных покрытий происходит по оксидному слою. Окрашивание этих материалов рекомендуется осуществлять сразу после удаления плёнки механическим или химическим способом.

Древесина и древесные композиты

Древесина является пористой поверхностью с большим количеством неровностей и не испытывает особых проблем с прочностью соединения отделочных материалов. Но нет предела совершенству, поэтому были разработаны различные технологии для улучшения адгезии в сочетании с сохранением защитных и декоративных свойств самой отделки. Их использование, к примеру, в сочетании с акриловыми красками, значительно улучшает атмосферостойкость, устойчивость к ультрафиолетовому выцветанию, придает биологическую защиту материалу. Поверхность древесины обрабатывается самыми разнообразными грунтовками, чаще всего, на основе боразотных соединений и нитроцеллюлозы.

Адгезия при сварочных работах

Сварка является одним из наиболее прочных методов соединения металлических конструкций. Это сцепление молекул двух элементов без использования промежуточных или вспомогательных веществ — клея или припоя. Происходит данный процесс под воздействием термической активации. Внешний слой соединяемых элементов нагревают выше температуры плавления, после чего происходит межмолекулярное сближение и соединение материалов.

Препятствием к качественной адгезии при сварке могут служить следующие факторы:

  • наличие оксидных плёнок. Они удаляются механически или химически при подготовке поверхности или исчезают непосредственно в процессе сварки под воздействием высокой температуры или флюсов;
  • несоответствие химического состава материалов и электродов. Особое внимание следует уделять наличию и количеству кремния и углерода в соединяемых деталях. Для соединения сталей разных марок рекомендуется использовать электроды с низким содержанием диффузионного водорода;
  • недостаточная глубина проплавления, которая напрямую зависит от силы тока и скорости передвижение электрода.