Ремонт Дизайн Мебель

Альтернативная энергия: электричество из недр. Геотермальные электростанции (ГеоТЭС) Геотермальная станция принцип работы

Определение геотермальной энергии заложено в самом её названии – это энергия тепла земных недр. Слой магмы, расположенный под земной корой, представляет собой огненно-жидкий, чаще всего силикатный расплав. Согласно подсчетам, энергетический потенциал тепла на глубине 10 тысяч метров в 50 тысяч раз превышает энергию мировых запасов природного газа и нефти. Выходящая на поверхность земли магма называется лавой. Наибольшая "пропускная способность" Земли в извержении лавы наблюдается на границах тектонических плит и там, где земная кора достаточно тонка. Когда лава входит в соприкосновение с водными ресурсами планеты, начинается резкий нагрев воды, что в результате приводит к гейзерным извержениям, формированию горячих озёр и подводных течений. Словом, возникают природные явления, свойства которых можно использовать в качестве практически неиссякаемого источника энергии. Источники геотермальной энергии практически неисчерпаемы. Правда, распространены они не повсеместно, хотя и обнаружены в более чем 60 странах мира. Наибольшее количество действующих наземных вулканов расположено в зоне Тихоокеанского вулканического огненного кольца (328 из 540 известных). Геотермический градиент в скважине, с помощью которой добираются до подземной энергии, повышается на 1 о С каждые 36 метров. Получаемое таким образом тепло поступает на поверхность в виде горячего пара или воды, которые можно использовать напрямую для обогрева зданий или косвенно, для производства электроэнергии. На практике геотермальные источники в различных регионах планеты значительно отличаются друг от друга, из-за чего их приходится классифицировать по десяткам различных характеристик, таким как средняя температура, минерализация, газовый состав, кислотность и пр. В плоскости практического применения для выработки электрической энергии основной классификацией геотермальных источников можно считать деление на три основных типа:
  • Прямой - используется сухой пар;
  • Непрямой - используется водяной пар;
  • Смешанный (бинарный цикл).
В простейших геотермальных электростанциях прямого типа для производства электроэнергии используют пар, который поступает из скважины непосредственно в турбину генератора. Самая первая геотермальная электростанция в мире работала именно по такому принципу. Эксплуатация этой станции началась в итальянском городке Лардерелло (недалеко от Флоренции) ещё в 1911 году. Семью годами ранее, 4 июля 1904 года с помощью геотермального пара здесь был приведен в действие генератор, который смог зажечь четыре электрические лампочки, после чего и было принято решение о строительстве электростанции. Что примечательно, станция в Лардерелло функционирует и по сей день. Одна из самых крупных ныне действующих геотермальных электростанций в мире мощностью 1400 МВт расположена в районе "Гейзерс" в Северной Калифорнии (США), и она также использует сухой пар. Геотермальные электростанции с непрямым типом производства электроэнергии сегодня наиболее распространены. Для их работы используются горячие подземные воды, которые закачиваются при высоком давлении в генераторные установки, установленные на поверхности. В геотермальных электростанциях смешанного типа кроме подземной воды используется дополнительная жидкость (или газ), чья точка кипения ниже, чем у воды. Они пропускаются через теплообменник, где геотермальная вода выпаривает вторую жидкость, а получаемые пары приводят в действие турбины. Такая замкнутая система экологически чиста, поскольку вредные выбросы в атмосферу практически отсутствуют. Кроме того, бинарные станции функционируют при довольно низких температурах источников, по сравнению с другими типами геотермальных станций (100-190 °С). Такая особенность в будущем может сделать этот тип геотермальных электростанций самым популярным, поскольку в большей части геотермальных источников вода имеет температуру ниже 190 °С.

Использование геотермальных источников в мире

Первая геотермальная электростанция в СССР была возведена на Камчатке – это Паужетская ГеоТЭС, начавшая свою работу в 1967 году. Первоначально мощность станции составляла 5 МВт; впоследствии её удалось увеличить до 11 МВт. Потенциал гидротермальных месторождений на Камчатке огромен. Запасы тепла геотермальных вод здесь оцениваются в 5000 МВт. Использование в полной мере геотермального тепла могло бы решить энергетическую проблему Камчатской области, сделать ее независимой от завозного топлива. Самым изученным и наиболее перспективным является Мутновское геотермальное месторождение, расположенное в 90 километрах южнее города Петропавловск-Камчатский. Еще в 1986 году, проведенная Институтом вулканологии РАН оценка показала, что прогнозируемые ресурсы месторождения составляют по тепловому выносу - 312 МВт, а по объемному методу - 450 МВт. Опытно-промышленная Верхне-Мутновская ГеоТЭС мощностью 12 (3x4) МВт функционирует с 1999 года. Установленная мощность на 2004 год - 12 МВт. I очередь Мутновской ГеоТЭС мощностью 50 (2x25) МВт включена в сеть 10 апреля 2003 года; установленная мощность на 2007 год - 50 МВт, планируемая мощность станции - 80 МВт. Действующие геотермальные электростанции обеспечивают до 30% энергопотребления центрального Камчатского энергоузла. Приятно отметить, что тепломеханическое оборудование ГеоТЭС на Мутновском месторождении разработано, создано и поставлено отечественными заводами: турбины принадлежат ОАО "КТЗ", сепараторы - ОАО "ПМЗ", энергетическая арматура - ОАО "ЧЗЭМ" и т.д. Запасами тепла земли богаты Курильские острова. В частности, на острове Итуруп, на Океанском геотермальном месторождении, уже пробурены скважины и строится ГеоТЭС. На южном острове Кунашир имеются запасы геотермального тепла, и их уже используют для получения электроэнергии и теплоснабжения города Южно Курильск. На острове Парамушир, имеющего запасы геотермальной воды температурой от 70 до 95°С, строится ГеоТС мощностью 20 МВт. Существенные запасы геотермального тепла (на границе с Камчатской областью) имеются на Чукотке. Частично они открыты и используется для обогрева находящихся поблизости населенных пунктов. В России использование геотермальной энергии, кроме Камчатки, Курил, Приморья, Прибайкалья и Западно-Сибирского региона, возможно на Северном Кавказе. Здесь изучены геотермальные месторождения с температурой от 70 до 180°С, находящиеся на глубине от 300 до 5000 метров. В Дагестане только в 2000 году добыли свыше 6 млн м 3 геотермальной воды. Всего на Северном Кавказе примерно полмиллиона людей обеспечены геотермальным водоснабжением. На сегодняшний день мировыми лидерами в геотермальной электроэнергетике являются США, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия и Исландия. Особенно ярким примером использования геотермальной энергии служит последнее государство. Остров Исландия появился на поверхности океана в результате вулканических извержений 17 миллионов лет назад, и теперь его жители пользуются своим привилегированным положением - примерно 90% исландских домов обогревается подземной энергией. Что касается выработки электроэнергии, здесь работают пять ГеоТЭС общей мощностью 420 МВт, использующих горячий пар с глубины от 600 до 1000 метров. Таким образом, с помощью геотермальных источников производится 26,5% всей электроэнергии Исландии.

Топ-15 стран, использующих геотермальную энергию (данные на 2007 г.)

Энергия низкопотенциальная, но перспективная

Геотермальные источники можно поделить на низко-, средне- и высокотемпературные. Первые (с температурой до 150 °С) используются, по большей части, для теплоснабжения горячей водой - ее подводят по трубам к зданиям (жилым и производственным), плавательным бассейнам, теплицам и т.д. Вторые (с температурой свыше 150 °С), содержащие сухой либо влажный пар, годятся для приведения в движение турбин геотермальных электростанций (ГеоТЭС). Существенным минусом "горячих" геотермальных источников является их "избирательная" расположенность в местах тектонической нестабильности, о чем говорилось выше. Если брать Россию, то запасами высокопотенциальной геотермальной энергией можно пользоваться только на Камчатке, Курилах да в районе Кавказских минеральных вод. Но земная "котельная" располагает не только высокопотенциальной, но и низкопотенциальной энергией, источником которой выступает грунт поверхностных слоев земли (глубиной до 400 м) или подземные воды с относительно низкой температурой. Использовать низкопотенциальное тепло можно с помощью тепловых насосов. Тепловой режим грунта земляных поверхностных слоев создается под воздействием радиогенного тепла, идущего из недр земли, а также попадающей на поверхность солнечной радиации. Интенсивность падающей солнечной радиации может колебаться в зависимости от конкретных почвенно-климатических условий в пределах от нескольких десятков сантиметров до полутора метров. Низкопотенциальное тепло эффективно использовать для обогрева зданий, водоснабжения горячей водой, подогрева различных сооружений (например, полей открытых стадионов). В последнее десятилетие значительно выросло число систем, использующих подземные недра для снабжения зданий теплом и холодом. Больше всего таковых систем находится в США. Имеются они также в Австрии, Германии, Швеции, Швейцарии, Канаде. В нашей стране подобных систем насчитывается единицы. В европейских странах тепловые насосы, в основном, отапливают помещения. В США, где системы воздушного отопления совмещены с вентиляцией, воздух не только нагревается, но и охлаждается. Если говорить о России, пример использования низкопотенциального источника тепловой энергии находится в Москве, в микрорайоне Никулино-2. Здесь была построена теплонасосная система для горячего водоснабжения многоэтажного жилого дома. Данный проект реализовали в 1998-2002 годах Министерством обороны РФ совместно с правительством Москвы, Минпромнауки России, НП "АВОК" и ОАО "Инсолар-Инвест" в рамках "Долгосрочной программы энергосбережения в г. Москве". Выделяют два вида систем использования низкопотенциальной тепловой энергии земли: открытые системы и замкнутые системы. Первые используют грунтовые воды, подводимые непосредственно к тепловым насосам, вторые – грунтовый массив. Для открытых систем характерны парные скважины, с помощью которых грунтовые воды не только извлекаются, но затем и возвращаются обратно в водоносные слои. Открытые системы позволяют получить большое количество тепловой энергии с относительно низкими затратами. Однако грунт должен быть водопроницаем, а сами грунтовые воды - обладать пригодным для эксплуатации химическим составом, чтобы избежать коррозии и отложений на стенках труб. Самая большая в мире геотермальная теплонасосная система, использующая энергию грунтовых вод, размещается в американском городе Луисвилл. С ее помощью снабжается теплом и холодом гостинично-офисный комплекс. Мощность системы - примерно 10 МВт. Замкнутые системы делятся на вертикальные и горизонтальные. Вертикальные грунтовые теплообменники используют низкопотенциальную тепловую энергию грунтового массива ниже так называемой "нейтральной зоны" (10-20 метров от уровня земли). Такие системы не требуют участков большой площади, а также не зависят от интенсивности солнечной радиации, падающей на поверхность. Им подходят почти все виды геологических сред, кроме грунтов с низкой теплопроводностью, например, сухого песка или гравия. В вертикальных грунтовых теплообменниках теплоноситель циркулирует по трубам (чаще всего полипропиленовым или полиэтиленовым), уложенным в вертикальных скважинах глубиной от 50 до 200 метров. Обычно используется два типа вертикальных грунтовых теплообменников: U-образный и коаксиальный. Первый представляет собой две параллельные трубы, соединенные в нижней части. В одной скважине располагаются одна или две пары таких труб. Преимущество U-образного типа - сравнительно низкая стоимость изготовления. Второй тип теплообменника (называемый также концентрическим) представляет собой две трубы разного диаметра, одна из которых размещается внутри другой. Системы с вертикальными грунтовыми теплообменниками пригодны для снабжения зданий как теплом, так и холодом. Небольшому строению хватит одного теплообменника, а вот для больших зданий может понадобиться несколько скважин с вертикальными теплообменниками. Как пример последнему служит система тепло- и холодоснабжения американского колледжа "Richard Stockton College", в которой используется рекордное количество скважин – 400 (глубиной 130 метров). В Европе самое большее число скважин (154 скважины глубиной 70 метров) пробурено для системы тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением. Горизонтальные грунтовые теплообменники создаются обычно неподалеку от здания, на небольшой глубине, но обязательно ниже уровня промерзания грунта в зимний период. В Европе подобные теплообменники представляют собой плотно соединенные (последовательно или параллельно) трубы. Чтобы сэкономить площадь, созданы специальные типы теплообменников, например, в виде спирали. В качестве источника низкопотенциальной тепловой энергии перспективно использовать воды из туннелей и шахт, поскольку температура воды в них имеет постоянную температуру круглый год и легко доступна. Использование подземного тепла, как высокопотенциального, так и низкопотенциального, считается крайне перспективным. Особенно это касается обеспечения зданий теплым и охлажденным воздухом с помощью низкопотенциального тепла. По прогнозам Мирового Энергетического комитета (МИРЭК), к 2020 году развитые страны мира станут достаточно активно осуществлять теплоснабжение теплонасосными системами. И здесь подойдут не только "разгоряченные" земные недра, но также воздух и вода морей и океанов. Например, в Швеции, где близ Стокгольма размещена станция на шести баржах мощностью 320 МВт, используют воду Балтийского моря с температурой +4 °С. В Российской Федерации огромные запасы природного газа, нефти, угля и леса позволяют (до поры до времени) не слишком задумываться об альтернативных источниках энергии. Однако работы по освоению геотермальных источников ведутся на ее территории не первый десяток лет, что свидетельствует о понимании важности вопроса. Ведь речь идет о неисчерпаемых источниках тепла и электричества, которые, рано или поздно, станут важными, и, возможно, основными поставщиками энергии для всего человечества, а не только для отдельно взятых стран.

В настоящее время мировыми лидерами в получении энергии из земных недр являются Соединенные Штаты Америки, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия и Исландия. Но и Россия не стоит в стороне. Мутновская геотермальная электростанция на Камчатке – один из ярких примеров преобразования глубинного тепла Земли в электрическую энергию в России.

Геотермальная энергетика – самая перспективная отрасль энергетики, особенно это касается России. Согласно прогнозам специалистов объемы энергии тепла Земли, сконцентрированная под толщей земной коры в 10 км, в 50 тысяч раз превышают объемы энергии всех мировых запасов углеводородов – нефти и природного газа.

Электростанции такого плана, как правило, возводятся в вулканических районах той или иной страны. При соприкосновении лавы вулканов с водными ресурсами происходит интенсивный нагрев воды, в результате чего в местах разлома тектонических плит, где земная кора наиболее тонка, горячая вода вырывается на поверхность земли в виде гейзеров, образуя горячие геотермальные озера или подводные течения.

Благодаря таким природным явлениям появилась возможность использования их свойств в качестве альтернативного, можно даже сказать, неисчерпаемого источника энергии. К сожалению, такие геотермальные источники распределены по поверхности земного шара неравномерно. Так на сегодняшний день они обнаружены и используются почти в 60-и странах, в основном, в районе Тихоокеанского вулканического кольца, а также в районе Дальнего Востока России.

Кроме открытых источников, добраться до подземной энергии возможно с помощью бурения скважин, причем через каждые 36 метров температура повышается на один градус. Получаемое таким способом тепло в виде горячей воды или пара можно использовать как для производства электрической энергии, для обогрева помещений, а также для производственных нужд, что актуально для России с холодными зимами.

Геотермальные электростанции

Электростанции, в работе которых используется пар, поступающий непосредственно из скважин в турбину генератора, называют станциями прямого типа. Самая первая и простейшая электростанция в мире была создана именно по такому принципу и заработала в 1911 году в итальянском населенном пункте Лардерелло. Жаль, конечно, что не в России. Что интересно, она вырабатывает электроэнергию до сих пор.

Одной из крупнейших электростанций, работающей на основе сухого пара из геотермального источника и в настоящее время, является станция, расположенная в местечке Гейзерс, в штате Северная Калифорния, США.

Наибольшее распространение получили геотермальные электростанции непрямого типа. Принцип работы заключается в подаче подземной горячей воды под высоким давлением в генераторные установки, расположенные на поверхности.

Наиболее экологически чистыми являются геотермальные электростанции смешанного типа. Удачным решением стало то, что кроме подземной воды используют дополнительную жидкость или газ с более низкой точкой кипения. При пропускании через теплообменник, горячая вода преобразует дополнительную жидкость до состояния пара, который приводит в действие турбины.

Кроме того, такие электростанции способны функционировать при довольно низких температурах подземной воды, от 100 до 190 °С. В ближайшем будущем геотермальные станции такого типа могут стать наиболее востребованными, поскольку большинство геотермальных источников в России имеют температуру воды намного ниже 190 °С.

Целью строительства в 1966 году Паужетской геотермальной электростанции, первой в России, стала необходимость обеспечения электроэнергией ряда жилых поселков и предприятий по переработке рыбы. Расположена станция на западном побережье Камчатки, вблизи села Паужетка, рядом с вулканом Камбальный.

Установленная мощность на момент пуска электростанции в 1966 году составляла 5 МВт, в 2011 году – 12 МВт. В настоящее время реализуется введение бинарного энергоблока, созданного по отечественной технологии. Реализация данного проекта не только выведет электростанцию на новые мощности – до 17 МВт, но и решит экологические проблемы, связанные со сбросом отработанного сепарата на грунт.

Верхне-Мутновская опытно-промышленная ГеоЭС

Электростанция расположена на юго-востоке Камчатского полуострова на отметке 780 метров над уровнем моря на склонах вулкана Мутновский. Станция была введена в эксплуатацию в 1999-м году. Она имеет три энергоблока по 4 МВт, то есть ее проектная мощность составляет 12 МВт.

Мутновская ГеоЭС

Электростанция, использующая геотермальные источники, расположена близ вулкана Мутновский, на юго-востоке Камчатки. Дата введения в эксплуатацию – апрель 2003 года.
Установленная мощность – 50 МВт, планируемая 80 МВт. Обслуживание данной станции полностью автоматизировано.

Благодаря использованию геотермальных электростанций на Камчатке значительно ослаблена зависимость этого региона от привозного дорогостоящего топлива. На данный момент примерно 30% энергозатрат покрываются именно этими источниками электрической энергии.

На острове Итуруп Курильской гряды построена и введена в действие геотермальная электростанция «Океанская».
Начало строительства — 1993 год, ввод — 2006 год, мощность 2,5 МВт.

Менделе́евская ГеоТЭС

Геотермальная электростанция на острове Кунашир близ вулкана Менделеева. Мощность станции — 3,6 МВт. В 2011 году начались работы по модернизации, результатом которой станет достижение мощности в 7,4 МВт. Данная станция предназначена для теплоснабжения и электроснабжения города Южно-Курильска.

Имеющиеся ресурсы Курильских островов могут позволить выработать 230 МВт электроэнергии, что достаточно для удовлетворения всех потребностей региона в тепле, горячем водоснабжении, а самое главное – в энергетике.

О.Баратова

Мощность Паужетской ГеоЭС могут увеличить за счет дублирующих скважин:

Стремительный рост энергопотребления, ограниченность невозобновляемых природных богатств, вынуждают задуматься об использовании альтернативных источников энергии. В этом отношении особого внимания заслуживает применение геотермальных ресурсов.

Геотермальные электростанции (ГеоЭС) – сооружения для получения электрической энергии за счет природного тепла Земли.

Геотермальная энергетика имеет более чем столетнюю историю. В июле 1904 года в итальянском городке Лардерелло был проведен первый эксперимент, позволивший получить электроэнергию из геотермального пара. А через несколько лет здесь же была запущена первая геотермальная электростанция, работающая до сих пор.

Перспективные территории

Для построения геотермальных электростанций идеальными считаются районы с геологической активностью, где естественное тепло находится на сравнительно небольшой глубине.

Сюда относятся области, изобилующие гейзерами, открытыми термальными источниками с водой, разогретой вулканами. Именно здесь геотермальная энергетика развивается наиболее активно.

Однако и в сейсмически неактивных районах имеются пласты земной коры, температура которых составляет более 100 °С.

На каждых 36 метрах глубины температурный показатель возрастает на 1 °С. В этом случае бурят скважину и закачивают туда воду.

На выходе получают кипяток и пар, которые можно использовать как для обогрева помещений, так и для производства электрической энергии.

Территорий, где можно таким образом получать энергию, много, поэтому геотермальные электростанции функционируют повсеместно.

Источники получения геотермальной энергии

Добыча естественного тепла может осуществляться из следующих источников.

Принципы работы геотермальных электростанций

Сегодня применяется три способа производства электричества с использованием геотермальных средств, зависящих от состояния среды (вода или пар) и температуры породы.

  1. Прямой (использование сухого пара). Пар напрямую воздействует на турбину, питающую генератор.
  2. Непрямой (применение водяного пара). Здесь используется гидротермальный раствор, который закачивается в испаритель. Полученное при снижении давления испарение приводит турбину в действие.
  3. Смешанный, или бинарный. В этом случае используется гидротермальная вода и вспомогательная жидкость с низкой точкой кипения, например фреон, который закипает под воздействием горячей воды. Образовавшийся при этом пар от фреона крутит турбину, потом конденсируется и снова возвращается в теплообменник для нагрева. Образуется замкнутая система (контур), практически исключающая вредные выбросы в атмосферу.
Первые геотермальные электростанции работали на сухом пару.

Непрямой способ на сегодняшний день считается самым распространенным. Здесь используются подземные воды температурой около 182 °С, которые закачиваются в генераторы, расположенные на поверхности.

Достоинства ГеоЭС

  • Запасы геотермальных ресурсов считаются возобновляемыми, практически неисчерпаемыми, но при одном условии : в нагнетательную скважину нельзя закачивать большое количество воды в короткий промежуток времени.
  • Для работы станции не требуется внешнее топливо.
  • Установка может работать автономно, на своем вырабатываемом электричестве. Внешний источник энергии необходим лишь для первого запуска насоса.
  • Станция не требует дополнительных вложений, за исключением расходов на техническое обслуживание и ремонтные работы.
  • Геотермальным электрическим станциям не нужны площади для санитарных зон.
  • В случае расположения станции на морском или океаническом берегу, возможно ее использование для естественного опреснения воды. Этот процесс может происходить непосредственно в режиме работы станции – при разогреве воды и охлаждении водяного испарения.

Недостатки геотермальных установок

  • Велики первоначальные вложения в разработку, проектирование и строительство геотермальных станций.
  • Зачастую проблемы возникают в выборе подходящего места для размещения электростанции и получении разрешения властей и местных жителей.
  • Через рабочую скважину возможны выбросы горючих и токсичных газов, минералов, которые содержатся в земной коре. Технологии на некоторых современных установках позволяют собирать эти выбросы и перерабатывать в топливо.
  • Бывает, что действующая электростанция останавливается. Это может произойти вследствие естественных процессов в породе либо при чрезмерной закачке воды в скважину.

Крупнейшие производители геотермальной энергии

В США и на Филиппинах построены самые крупные ГеоЭС. Они представляют собой целые геотермальные комплексы, состоящие из десятков отдельных геотермальных станций.

Самым мощным считается комплекс «Гейзеры», расположенный в Калифорнии. Он состоит из 22 двух станций с суммарной мощностью 725 МВт, достаточной для обеспечения многомиллионного города.
  • Мощность филиппинской электростанции «Макилинг-Банахау» составляет около 500 МВт.
  • Еще одна филиппинская электростанция с названием «Тиви» имеет мощность 330 МВт.
  • «Долина Империал» в США – комплекс из десяти геотермальных электростанций с совокупной мощностью 327 МВт.
  • Хронология развития отечественной геотермальной энергетики

Российская геотермальная энергетика начала свое развитие с 1954 года, когда было принято решение о создании лаборатории по исследованию естественных тепловых ресурсов на Камчатке.

  1. 1966 год – запущена Паужетская геотермальная электростанция с традиционным циклом (сухой пар) и мощностью 5 МВт. Через 15 лет ее мощность была доработана до 11 МВт.
  2. В 1967 году начала функционировать Паратунская станция с бинарным циклом. Кстати, патент на уникальную технологию бинарного цикла, разработанный и запатентованный советскими учеными С. Кутателадзе и Л. Розенфельдом, был куплен многими странами.

Большие уровни добычи углеводородного сырья в 1970-е годы, критическая экономическая ситуация в 90-е годы остановили развитие геотермальной энергетики в России. Однако сейчас интерес к ней вновь появился по ряду причин:

  • Цены на нефть и газ на внутреннем рынке становятся близкими к мировым.
  • Запасы топлива стремительно истощаются.
  • Вновь открытые месторождения углеводородов на дальневосточном шельфе и побережье Арктики в настоящее время малорентабельны.

Вам нравятся большие, мощные машины? Прочитайте интересную статью про .

Если вам нужно оборудование для дробления материалов – прочтите эту .

Перспективы освоения геотермальных ресурсов в России

Наиболее перспективными областями Российской Федерации в части использования тепловой энергии для выработки электричества являются Курильские острова и Камчатка.

На Камчатке имеются такие потенциальные геотермальные ресурсы с вулканическими запасами парогидротерм и энергетических термальных вод, которые способны обеспечить потребность края на 100 лет. Многообещающим считается Мутновское месторождение, известные запасы которого могут предоставить до 300 МВт электричества. История освоения этой области началась с георазведки, оценки ресурсов, проектирования и строительства первых камчатских ГеоЭС (Паужетской и Паратунской), а также Верхне-Мутновской геотермальной станции мощностью 12 МВт и Мутновской, имеющей мощность 50 МВт.

На Курильских островах функционируют две электростанции, использующие геотермальную энергию – на острове Кунашир (2,6 МВт) и на острове Итуруп (6МВт).

В сравнении с энергетическими ресурсами отдельных филиппинских и американских ГеоЭС отечественные объекты производства альтернативной энергии проигрывают значительно: их суммарная мощность не превышает и 90 МВт. Но камчатские электростанции, к примеру, обеспечивают потребности региона в электричестве на 25 %, что в случае непредвиденных прекращений поставки топлива не позволит жителям полуострова остаться без электроэнергии.

В России имеются все возможности для разработки геотермальных ресурсов – как петротермальных, так и гидрогеотермальных. Однако используются они крайне мало, а перспективных областей более чем достаточно. Кроме Курил и Камчатки возможно практическое применение на Северном Кавказе, Западной Сибири, Приморье, Прибайкалье, Охотско-Чукотском вулканическом поясе.

Введение

1. Геотермальная энергия

Заключение

Библиографический список

Введение

Энерговооруженность общества - основа его научно-технического прогресса, база развития производственных сил. Её соответствие общественным потребностям - важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Она должна быть надежна и с расчетом на отдаленную перспективу. Энергетический кризис 1973-1974 годов в капиталистических странах продемонстрировал, что этого трудно достичь, основываясь лишь на традиционных источниках энергии (нефти, угле, газе). Необходимо не только изменить структуру их потребления, но и шире внедрять нетрадиционные, возобновляемые источники энергии (НВИЭ). К ним относят солнечную, геотермальную, ветровую энергию, а также энергию биомассы и мирового океана. Сюда же, относят и атомную энергию, но на нынешнем этапе ее развития это представляется крайне расплывчато.

В отличие от ископаемых топлив, нетрадиционные виды энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к необратимому исчерпанию ресурсов. Основной фактор при оценке целесообразности использования НВИЭ - стоимость производимой энергии в сравнении со стоимостью энергии, получаемой обычными методами. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

Из приведенных выше альтернативных источников энергии, одним из самых распространенных, развитым в технологическом плане, востребованным и, что важно, дешевым, является геотермальная энергия. Благодаря этим качествам, уже с начала XX века она получила широкое распространение даже относительно других альтернативных источников энергии, что дает право надеяться, что она займет достойное место в развитии альтернативной энергетики нынешнего, а возможно и последующих столетий.

1. Геотермальная энергия

Мировой потенциал. перспективы развития

Геотермальная энергия - это энергия, получаемая из природного тепла Земли, образующаяся за счет расщепления радионуклидов в результате физико-химических процессов в земных недрах.

Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов:

-месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

-источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

-месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой, так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

-сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

-магма, представляющая собой нагретые до 1300°С расплавленные горные породы. Тепло возникает там, прежде всего, за счет распада природных радиоактивных элементов, таких как уран и калий.

Однако тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть такой энергии. Из них пригодные для использования геотермальные ресурсы составляют всего 1% общей теплоемкости верхней 10-километровой толщи земной коры, или 137 трлн. т. у. т (тонн условного топлива). Но и это количество геотермальной энергии может обеспечить нужды человечества на долгое время. Области повышенной сейсмической активности, вокруг краев континентальных плит являются наилучшими местами для строительства геотермальных электростанций, потому что кора в таких зонах намного тоньше. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. К сожалению, человечество еще не научилось использовать энергию вулканов в мирных целях. А вот рассматриваемые далее скрытые, на первый взгляд незаметные, проявления энергии земных недр, уже давно эффективно используются людьми для получения тепловой, а в течение последних почти 100 лет и электрической энергии.

При непосредственном использовании, высокотемпературное тепло, нагревающее геотермальную воду до значений температур, не превышающими 100°С, как правило, используется для нужд теплоснабжения, горячего водоснабжения и других подобных целей. Практика прямого использования тепла широко распространена на границах тектонических плит, например в Исландии, Японии, и Дальнем Востоке. Примером такого источника тепла служат гейзеры. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. При значениях температур геотермальных вод превышающих 140 - 150°С, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара вырывается на поверхность, экономически, наиболее выгодно использовать геотермальную энергию для выработки электричества (Смотри таблицу 1).

Таблица 1 - Соотношения значений температур и способов применения геотермальной энергии

Значение температуры воды,°СОбласть применения Более 150Выработка электроэнергииМенее 100Системы отопления зданийОколо 60Системы горячего водоснабженияМенее 60Теплоснабжение теплиц, геотермальные холодильные установки и т.п.

Группа экспертов из Всемирной ассоциации по вопросам геотермальной энергии, которая произвела оценку запасов низко - и высокотемпературной геотермальной энергии для каждого континента, получила следующие данные по потенциалу различных типов геотермальных источников нашей планеты (Смотри таблицу 2).

Таблица 2 - Геотермальный потенциал низко- и высокотемпературной энергии

Наименование континента Тип геотермального источника: Высокотемпературный, используемый для производства электроэнергии, ТДж/годНизкотемпературный, используемый в виде теплоты, ТДж/год (нижняя граница) традиционные технологиитрадиционные и бинарные технологииЕвропа18303700>370Азия29705900>320Африка12202400>240Северная Америка13302700>120Латинская Америка28005600>240Океания10502100>110Мировой потенциал1120022400>1400

Как видно из этой таблицы, потенциал геотермальных источников энергии просто таки колоссален. Однако используется он крайне незначительно: установленная мощность ГеоТЭС во всем мире на начало 1990-х годов составляла всего лишь около 5000, а на начало 2000-х годов - около 6000 МВт, существенно уступая по этому показателю большинству электростанций, работающих на других возобновляемых источниках энергии. Да и выработка электроэнергии на ГеоТЭС в этот период времени была незначительной. Об этом свидетельствуют следующие данные. В структуре мирового производства электроэнергии, возобновляемые источники энергии в 2000 году обеспечили 19 % общемирового производства электроэнергии. При этом, несмотря на значительные темпы развития, геотермальная, солнечная и ветровая энергия составляла в 2000 году менее 3 % от общего объема использования энергии, получаемой от возобновляемых источников.

Однако в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

Отметим, что геотермальные ресурсы разведаны в 80 странах мира и в 58 из них активно используются. Крупнейшим производителем геотермальной электроэнергии являются США, где геотермальная электроэнергетика, как один из альтернативных источников энергии, имеет особую правительственную поддержку. В США в 2005 году на ГеоТЭС было выработано около 16 млрд. кВтч электроэнергии в таких основных промышленных зонах, как зона Больших гейзеров, расположенная в 100 км к северу от Сан-Франциско (1360 МВт установленной мощности), северная часть Соленого моря в центральной Калифорнии (570 МВт установленной мощности), Невада (235 МВт установленной мощности) и др. Геотермальная электроэнергетика бурно развивается также в ряде других стран, в том числе: на Филиппинах, где на ГеоТЭС на начало 2003 года было установлено 1930 МВт электрической мощности, что позволило обеспечить около 27% потребностей страны в электроэнергии; в Италии, где в 2003 году действовали геотермальные энергоустановки общей мощностью в 790 МВт; в Исландии, где действуют пять теплофикационных ГеоТЭС общей электрической мощностью 420 МВт, вырабатывающие 26,5 % всей электроэнергии в стране; в Кении, где в 2005 году действовали три ГеоТЭС общей электрической мощностью в 160 МВт и были разработаны планы по доведению этих мощностей до 576 МВт. Перечень государств лидеров, где ускоренными темпами развивается геотермальная электроэнергетика, смотри в таблице 3.

Таблица 3 - Топ-15 стран, использующих геотермальную энергию (данные на 2007 г.)

СтранаМощность (МВт) США2687Филиппины1969,7Индонезия 992Мексика953Италия810,5Япония535,2Новая Зеландия471,6Исландия 421,2Сальвадор204,2Коста-Рика162,5Кения128,8Никарагуа87,4Россия79Папуа-Новая Гвинея56Гватемала53

К сожалению, Россия не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии в России по оценкам в 10-15 раз превышают запасы органического топлива в стране.

Характеризуя развитие мировой геотермальной электроэнергетики как неотъемлемой составной части возобновляемой энергетики на более отдаленную перспективу, отметим следующее. Согласно прогнозным расчетам в 2030 году ожидается некоторое (до 12,5 % по сравнению с 13,8 % в 2000 году) снижение доли возобновляемых источников энергии в общемировом объеме производства энергии. При этом энергия солнца, ветра и геотермальных вод будет развиваться ускоренными темпами, ежегодно увеличиваясь в среднем на 4,1 %, однако вследствие "низкого" старта их доля в структуре возобновляемых источников и в 2030 году будет оставаться наименьшей.

Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3 - 5 км обычно превышает 100°С.

Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки. Главными достоинствами геотермальной энергии являются;

-возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо- и теплоснабжения, а так же для выработки электроэнергии либо одновременно для того и другого;

-практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт∙ч);

-экономическая эффективность в несколько раз превосходит традиционные виды получения электроэнергии, а также и другие виды НВИЭ;

-ее практическая неиссякаемость;

-полная независимость в работе от условий окружающей среды, времени суток и года;

-коэффициент использования превышает 90%;

Тем самым, использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем;

-обеспечение устойчивого тепло - и электроснабжения населения в тех районах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.);

-обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.;

-снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой;

Указанные преимущества приводят к тому, что геотермальная энергетика, несмотря на свою молодость (у нее всего 100-летняя история) развивается сейчас во всем мире;

Основными недостатками геотермальной энергии являются:

необходимость обратной закачки отработанной воды в подземный водоносный горизонт;

-высокая минерализация термальных вод большинства месторождений, наличие в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы;

-ограниченные районы источников такой энергии;

-низкий температурный потенциал теплоносителя;

-ограниченность промышленного опыта эксплуатации станций;

Также развитие геотермальной энергетики останавливает высокая цена установок, а также более низкий выход энергии в сравнении с газовыми или нефтяными скважинами. С другой стороны - их можно использовать гораздо дольше, чем месторождения традиционных источников.

Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же, следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

геотермальная энергия россия электростанция

2. Геотермальные электростанции

Виды ГеоТЭС по принципу работы

Геотермальная электростанция (ГеоТЭС) - вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников.

Схема работы геотермальной электростанции достаточно проста. Вода, через специально пробуренные отверстия, закачивается глубоко под землю, в те слои земной коры, которые естественным образом довольно сильно нагреты. Просачиваясь в трещины и полости горячего гранита, вода нагревается, вплоть до образования водяного пара, и по другой, параллельной скважине поднимается обратно. После этого горячая вода поступает непосредственно на электростанцию, в теплообменник, и её энергия преобразуется в электрическую. Это происходит посредством турбины и генератора, как и во многих других типах электростанций. В другом варианте геотермальной электростанции, используются природные гидротермальные ресурсы, т.е. вода, нагретая до высокой температуры в результате естественных природных процессов. Однако область использования подобных ресурсов значительно ограничена наличием особых геологических районов. В этом случае в теплообменник поступает уже нагретая вода, выкачанная из земных недр. В другом случае - вода в результате высокого геологического давления, поднимается самостоятельно, через специально пробуренные отверстия. Это, так скажем, общий принцип работы геотермальной электростанции, который подходит для всех их типов. По своему техническому устройству, геотермальные электростанции подразделяются на несколько видов:

-геотермальные электростанции на парогидротермах - это электростанции, в которых используется уже нагретая природой вода;

-двухконтурная геотермальная электростанция на водяном паре. В таких электростанциях имеется специальный двухконтурный парогенератор, позволяющий генерировать "добавочный" пар. Иными словами на "горячей" стороне парогенератора используется геотермальный пар, а на "холодной" его стороне генерируется вторичный пар, полученный из подведенной воды;

-двухконтурная геотермальная электростанция на низкокипящих рабочих веществах. Область применения таких электростанций - использование очень горячих (до 200 градусов) термальных вод, а также использование дополнительно воды на месторождениях парогидротерм, о которых было сказано выше;

В настоящее время существует три схемы производства электроэнергии с использованием геотермальных ресурсов:

-прямая с использованием сухого пара

-непрямая с использованием водяного пара

Тип преобразования зависит от состояния среды (пар или вода) и ее температуры.

Первыми были освоены электростанции на сухом пару с прямым типом производства электроэнергии. Самая первая геотермальная электростанция в мире работала именно по такому принципу. Эксплуатация этой станции началась в итальянском городке Лардерелло (недалеко от Флоренции) ещё в 1911 году. Семью годами ранее, 4 июля 1904 года с помощью геотермального пара здесь был приведен в действие генератор, который смог зажечь четыре электрические лампочки, после чего и было принято решение о строительстве электростанции. Что примечательно, станция в Лардерелло функционирует и по сей день. Для производства электроэнергии на таких ГеоТЭС, пар, поступающий по трубам из скважины, пропускается непосредственно через турбину, которая вращает генератор, вырабатывающий электроэнергию. (Смотри рисунок 1)

Рисунок 1 - Принцип работы геотермальной электростанции, работающей на сухом пару

Дальнейшим развитием ГеоТЭС стали электростанции с непрямым типом производства электроэнергии, на сегодняшний день являющиеся самыми распространенными. Они используют горячие подземные воды (температурой до 182 °С) которые закачиваются при высоком давлении в установки на поверхности. Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности. (Смотри рисунок 2)

На данный момент, все большее распространение получают ГеоТЭС со смешанным циклом работы. Появившаяся несколько лет назад новая, разработанная австралийской компанией Geodynamics Ltd., революционная технология строительства ГеоТЭС - технология Hot-Dry-Rock, существенно повышает эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем. До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для этого они отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. Поэтому если на такую глубину через скважину закачать воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл, таким образом, повторится. (Смотри рисунок 3)

Рисунок 2 - Принцип работы геотермальной электростанции с непрямым типом производства энергии

Рисунок 3 - Принцип работы геотермальной электростанции с бинарным циклом

3. Развитие геотермальной энергетики в России

ч. Россия, к сожалению, не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии по оценкам в 10-15 раз превышают запасы органического топлива. Практически на всей территории страны есть запасы геотермального тепла с температурами в диапазоне от 30 до 200 °С. На сегодняшний день уже пробурено около 4000 скважин на глубину до 5000 м, позволяющих перейти к широкомасштабному внедрению современных технологий для локального теплоснабжения на всей территории страны. Потенциальные тепловые ресурсы верхних слоев Земли, до глубины 100-200 м оцениваются в 400-1000 млн. тонн условного топлива в год.

По данным института вулканологии Дальневосточного Отделения Российской Академии наук, только геотермальные ресурсы Камчатки оцениваются в 5000 МВт, что позволит обеспечивать регион электроэнергией и теплом в течение 100 лет. Поэтому особое внимание уделяется развитию геотермальной энергетики в данном регионе. Уже разработана и реализовывается программа создания геотермального энергоснабжения Камчатки, в результате которой ежегодно будет сэкономлено около 900 т. у. т.

Согласно прогнозам Research Techart, доля геотермальной энергетики в России к 2020 году может достигнуть 0,3% в совокупном энергобалансе. Установленная мощность составит 750 МВт и посредством термальных ресурсов земли может вырабатываться до 5 млрд. кВт∙ч электроэнергии. Наибольший прирост установленных мощностей ожидается в период с 2015 по 2020. Прогнозная динамика ввода геотермальных мощностей представлена на рисунке 4. Развитию отрасли будет также способствовать увеличение объема инвестиций. Так, до 2020 года в строительство новых геотермальных объектов будет вложено около 60 млрд. рублей. (Рисунок 5)

Мощность, МВт

Временной промежуток

Рисунок 4 - Прогнозируемая динамика ввода новых мощностей, МВт. Млрд. руб.

Временной промежуток

Рисунок 5 - Оценка капиталовложений в создание объектов геотермальной энергетики, млрд. руб.

Вместе с тем, рассматривая текущее и перспективное производство электроэнергии на основе возобновляемых источников, следует отметить, что геотермальная энергия к началу века от общего количества вырабатываемой электроэнергии не превосходила 0,15 % и лишь к 2010 г. хотя и увеличится на треть, но не превысит 0,2 % с общей выработкой на уровне 7 ТВт∙ч. В соответствии с Энергетической стратегией России до 2020 года планируется рост теплопотребления в стране не менее чем в 1,3 раза, причем доля децентрализованного теплоснабжения будет возрастать с 28,6% в 2000 г. до 33% в 2020 г. Однако до недавнего времени, масштаб использования геотермальной энергии в стране был весьма скромным. Особенно актуальным представляется использование геотермальной энергии в отдаленных регионах России, в частности, на Камчатке. На Камчатке, на Паратунском месторождении в 1967 году была создана опытно-промышленная геотермальная электростанция мощностью около 500 кВт - это был первый опыт получения электроэнергии с помощью геотермального тепла в России. Тогда же началась первая в России промышленная выработка электроэнергии на Паужетской геотермальной электростанции. Последняя до сих пор работает и дает самую дешевую на Камчатке электроэнергию.

Когда в условиях рыночной экономики резко начала расти цена на мазут, выяснилось, что самой дорогой электроэнергией в России стала камчатская, целиком и полностью зависящая от так называемого северного завоза. Были времена, когда 1 кВт∙ч стоил почти 30 центов. Для сравнения: мировая цена - 6 центов, в России - 1,5-3. В 1994 г. организовался ОАО "Геотерм" и АО "Геотерм-М", и с этого момента началась реализация проекта. Развитие геотермальной энергетики на Камчатке в настоящее время идет не столь активно, как этого требует экономика и экологическая обстановка в регионе. Причин несколько: отсутствие в стратегии развития энергетики региона акцента на геотермию, значительные долги АО "Камчатскэнерго" за многолетние поставки мазута.

По данным АО "Геотерм - М", геотермальные ресурсы России распределены следующим образом: все три российские геотермальные электростанции расположены на территории Камчатки, суммарный энергопотенциал пароводяных терм которой оценивается в 1 ГВт рабочей электрической мощности, однако реализован только в размере 76,5 МВт установленной мощности (2004 год) и около 420 млн. кВт/час годовой выработки (2004 год). Электростанция Мутновская, самая большая в регионе, находится в 120 километрах от города Петропавловск-Камчатский на высоте 1 км над уровнем моря, у подножья одноименного вулкана. Мутновское месторождение состоит из Верхне-Мутоновской ГеоТЭС, установленной мощностью 12 МВт (2007) и выработкой 52,9 млн. кВт·ч/год (2007) (81,4 в 2004) и Мутоновской ГеоТЭС мощностью 50 МВт (2007) и выработкой 360,7 млн. кВт·ч/год (2007) (276,8 в 2004 г.)

По данным Международного энергетического агентства (IEA) цена строительства этих установок составила 150 миллионов долларов. Для финансирования проекта РАО ЕЭС было получено от Европейского Банка реконструкции и развития кредит в 100 миллионов долларов. По прогнозам специалистов, производственные мощности Мутновской ГеоТЭС в ближайшие годы вырастут до 250 МВт.

Паужетское месторождение находится возле вулканов Кошелева и Камбального - Паужетская ГеоТЭС мощностью 14,5 МВт·э (2004) и выработкой 59,5 млн. кВт∙ч. На Паужетской ГеоТЭС мощностью 11 МВт используется на паровых турбинах только отсепарированный геотермальный пар из пароводяной смеси, получаемой из геотермальных скважин. Большое количество геотермальной воды (около 80% общего расхода ПВС) с температурой 120°C сбрасывается в нерестовую реку Озерная, что приводит не только к потерям теплового потенциала геотермального теплоносителя, но и существенно ухудшает экологическое состояние реки. Предлагается использовать тепло сбросной геотермальной воды для выработки электроэнергии путем создания двухконтурной энергоустановки на низкокипящем рабочем теле. Расход сбросной воды на действующей Паужетской ГеоТЭС достаточен для энергоустановки мощностью 2 МВт. Температура сбросной воды снижается до 55°C, тем самым значительно уменьшается тепловое загрязнение реки.

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

Существует проект Океанской ГеоТЭС мощностью 34,5 МВт годовой выработкой 107 млн. кВт·ч. В настоящее время электроснабжение г. Курильска и поселков Рейдово и Горячие Ключи осуществляется с помощью ДЭС, а теплоснабжение - с помощью угольных котельных. Дизтопливо ввозится в короткий период навигации - на о. Итуруп нет своего топлива. В последние годы из-за финансовых трудностей завоз топлива на остров резко сократился; электроэнергия подается населению по 2-3 часа в сутки. Вместе с тем на острове имеются богатейшие по масштабам острова запасы высокопотенциальных геотермальных источников энергии, которые к тому же в основном уже разведаны. На гидрогеологическую разведку и НИОКР по созданию ГеоТЭС израсходовано около 75-80 млрд. руб. в текущих ценах. Стоимость электроэнергии на ГеоТЭС в два с лишним раза ниже, чем на ДЭС. Привозное топливо будет вытеснено из расчета 2,5-3 тыс. т. у. т. /год/МВт. Улучшится экологическая обстановка на острове.

На Кунашире действует ГеоТЭС 2,6 МВт, а планируют несколько ГеоТЭС суммарной мощностью 12-17 МВт. В Калининградской области планируется осуществить пилотный проект геотермального тепло - и электроснабжения города Светлый на базе бинарной ГеоТЭС мощностью 4 МВт. В настоящее время геотермальные источники энергии обеспечивают на Камчатке до 25 процентов от общего энергопотребления, что значительно помогает ослабить зависимость полуострова от дорогостоящего привозного мазута. Крупнейшие месторождения парогидротерм Камчатки расположены в горных местностях с неблагоприятным климатом. Среднегодовая температура отрицательная, глубина снега до 10 м. Это существенно затрудняет и удорожает строительство и эксплуатацию геотермальных электростанций.

Сотрудниками ЭНИН, АО "Наука" и НУЦ МЭИ предложен проект ГеоТЭС позволяющий, как минимум, в полтора раза увеличить их полезную мощность и повысить надежность.

Как известно, поступающая из геотермальных скважин пароводяная смесь имеет сложный химический состав. Содержание солей в водяной фазе до 2 г/л, в том числе много кремнекислоты, в паре значительное количество неконденсирующихся газов, включая сероводород. Это ограничивает возможность глубокого использования теплового потенциала геотермального теплоносителя в традиционном цикле ГеоТЭС с конденсационными паровыми турбинами, не позволяя получать дополнительный пар расширением воды и глубокий вакуум в конденсаторе. Сильный ветер, мороз, обильные снегопады в сочетании с высокой влажностью создают угрозу образования льда в обычно применяемых на ГеоТЭС влажных градирнях, что может привести к остановке энергоблоков и даже к разрушению градирен.

На предлагаемых ГеоТЭС комбинированного цикла эти проблемы в значительной степени решаются. Если применить паровые турбины с близким к атмосферному противодавлением и направить отработанный пар в конденсатор, являющийся одновременно парогенератором нижнего контура станции с турбинами на низкокипящем незамерзающем рабочем теле, то суммарную выработку электроэнергии можно значительно повысить за счет снижения температуры отвода тепла из цикла. Конденсация пара низкокипящего рабочего тела осуществляется в воздушном конденсаторе, поэтому полезная мощность станции зимой значительно возрастает вместе с ростом потребности в электроэнергии. Кроме того, нет затрат пара на эжекторы для удаления неконденсирующихся газов, можно также частично использовать тепло геотермальной воды для перегрева пара низкокипящего рабочего тела. Облегчается зимняя эксплуатация станции, так как нет открытого контакта воды с воздухом, а температура воды в теплообменных аппаратах и трубопроводах не опускается ниже 60°С.

Комбинированные ГеоТЭС уже работают за рубежом, но в районах с тропическим климатом, где их эффективность не может проявиться в полную силу из-за высоких температур воздуха. Для северных районов вышеуказанные преимущества таких станций обеспечивают большие перспективы их применения. В проходящем сейчас международном тендере на строительство первой очереди Мутновской ГеоТЭС станция комбинированного цикла рассматривается в качестве одного из возможных вариантов.

К сожалению, в России отсутствует отечественное серийное оборудование энергоустановок на низкокипящем рабочем теле, поэтому реальными поставщиками могут быть лишь иностранные фирмы. Это приводит к росту необходимых капвложений в строительство и эксплуатационных затрат. Чтобы ускорить создание комбинированных ГеоТЭС на Камчатке и стимулировать работу отечественных производителей оборудования, АО "Геотерм" предполагает в ближайшее время построить четвертый блок Верхне-Мутновской ГеоТЭС по комбинированной тепловой схеме.

Развитие геотермальной энергетики в России поможет во многом разрешить проблему электрификации малообжитых территорий и повышения надёжности электроснабжения той части потребителей, для которых централизованное энергообеспечение экономически неприемлемо. Без использования возобновляемых источников нельзя удовлетворительно решить энергоснабжение районов Крайнего Севера; районов, не связанных сетями общего пользования; повысить до цивилизованного уровня надёжность и качество электроснабжения регионов, дефицитных по электрической энергии и органическим ресурсам; улучшить экологическую обстановку по стране, обеспечения аварийного энергоснабжения, специальных объектов, а также объектов сферы образования, культуры, услуг.

Заключение

Тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть такой энергии. Из них пригодные для использования геотермальные ресурсы составляют всего 1% общей теплоемкости верхней 10-километровой толщи земной коры, или 137 трлн. тонн условного топлива. Но и это количество геотермальной энергии может обеспечить нужды человечества на долгое время. Области повышенной сейсмической активности, вокруг краев континентальных плит являются наилучшими местами для строительства геотермальных электростанций, потому что кора в таких зонах намного тоньше. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности.

В структуре мирового производства электроэнергии, возобновляемые источники энергии в 2000 году обеспечили 19 % общемирового производства электроэнергии. При этом, несмотря на значительные темпы развития, геотермальная, солнечная и ветровая энергия составляла в 2000 году менее 3 % от общего объема использования энергии, получаемой от возобновляемых источников. Однако в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

Отметим, что геотермальные ресурсы разведаны в 80 странах мира и в 58 из них активно используются. Крупнейшим производителем геотермальной электроэнергии являются США, где геотермальная электроэнергетика, как один из альтернативных источников энергии, имеет особую правительственную поддержку. Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3 - 5 км обычно превышает 100°С.

Геотермальная энергетика, и геотермальные электростанции в том числе, является одним из самых перспективных видов получения альтернативных источников энергии. Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена, прежде всего, истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием традиционной энергетики на окружающую среду.

Сегодня ГеоТЭС в мире производят около 54613 ГВт∙ч энергии в год. Суммарная мощность существующих геотермальных систем теплоснабжения оценивается в 75900 ГВтч. Россия, к сожалению, не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии по оценкам в 10-15 раз превышают запасы органического топлива.

Сейчас, в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются.

К тому же, следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии.

В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

Библиографический список

1. Попов, М.С. Геотермальная энергетика в России [Текст] / М.С. Попов - М.: "Энергоатомиздат", 1988. - 294 с.

Максимов, И.Г. Альтернативные источники энергии [Текст] / И.Г. Максимов - М.: "Эко-Тренд", 2005. - 387 с.

Феофанов, Ю.А. Геотермальные электростанции [Текст] / Ю.А. Феофанов - М.: "Эко-Тренд", 2005. - 217 с.

Алхасов, А.Б. Геотермальная энергетика: проблемы, ресурсы, технологии [Текст] / А.Б. Алхасов - М.: "Физматлит", 2008. - 376 с.